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ABSTRACT

U

The major contribution o ,thin- 4iam.ati is the int._d-etkm "- e -= novel tech-
niques to solve a variety of distributed resource sharing problems arising in Packet Radio Networks
(PRNETs). Some of t",: ut,,ncdl imU MUM.al stt ig kiiu uthe would -be

ai.' applicable to a large class of resource sharing problems in computer communication networks. The
results c - f,1ilahno -tl- eawserii..

a (1) Problems of adaprive channel sharing algorithns: There are two major contributions falling
under this category:)

-. A novel distributed adaptive channel-access scheme, the Urn scheme. has been
derived mathematically. The Urn scheme adapts to the channel traffic, per-
forming similar to AL A for light traffic and converging smoothly to Time
Division Multipless for heavy traffic, eliminating collisions and exploiting
the full cha.l pacity; in the medium range, it outperforms both schemes.
SThe-t~m scheme is proved to be optimal among a large class of access schemes
and it lends itself to a variety of robust distributed implementations, thus
offering a practical alternative to classical schemes.

* fb A novel mathematical approach to decentralized optimal resource sharing is
developed. Using this approach, a very general characterization of optimal dis-
tributed access schemes for multi-hop networks is derived. For a single-hop
network the optimalty rules implies such diverse access slemes as ALOHA,the Urn scheme and perfect-scheduling. For a mjiltitp network, a terra- -
incognita, the rule implies a v v ety of--nov!qt relaxation-type. decentralized,
optimal access schemes.

2. Problems of interlering quetteing processes: Ihe problems of interfering queueing
processes arise in computer communication networ-E que --naturally. Queueing
processes may interfere with each other through their arrival processes (e.g., "join the
shortest queue" routing) or through their service processes (e.g., destructive collisions
in PRNETs). We develop novel analytical solutions, exact and approximate, to prob-
lems of interfering queues in PRNETs. We introduce a generalization of the Wiener-
Hopf factorization technique to solve some general interfering pairs of queueing
processes.

, :3) Capaciv of* multi-hop nerworks: We compute the capacity of tandems and show that in
the limit, when the length of the tandem increases to infinity, the capacity converges to
4/27 of the bandwidth. A novel phenomena of singular topologies (i.e., where topol-
ogy helps reduce interference) in PRNETs is explored.

- . . . -- -l - --- - - - - -
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I. INTRODUCTION

1.1 SOME READING SUGGESTIONS

Most sections of the =nrdcto ay be skipped by a reader familiar with

computer comm icto networks& I have tried to make each chapter as self

contained as pouuible. The unavoidable prime is paid in overlaps and repetitions.

The best path to pursue in reading this d _WsrtaiIs to start directy with

chapter two and use the introduction as a reference, only when the terminology

becomes unclear.

1L2 PACKET RADIO NETWORKS FOR CONFUTER
COMMUNICATION

1.2. WHAT IS A PACKET RADIO NETWORK

A Packet Radio Uni t (PRU) is a digital transceiver which can generate, receive

and transmit packet of digital data, over a broadcast channel. A P1W posses

some limited Intelligence which enables it to make simple decisions, a limited

-: Suffering facility which enables It to store pack~ets, and a limited range of

* transmission and reception, which enables it to form a comunity together

with fellow FPlls.

A Packet Rad Io Netwok (PENET) Is a co9mmkunity of PRts

(IcAHN75, KAMM?, KAHN78, XE176LT, ROE2 FMAN76, BUEC75]. Community

members may wish to talk to each other at unpredictable times. When a direct

* communication is impossible (because of a limited range or physical barriers)

the PlVs may employ the network as a relay mechanism to store-and-forward
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*. their pack ts to the das n Some PRUs may be distinguished as terninals,

Le., pocket producers, some function as repeaters to rely packets towards their

destinatoms and some function as statom which pomss specal procesing

capabilitieL In this ces packets are generated at the terminals and relayed by

the repeaters until they reach the station which provides the terminals with

services. Figure 1.- 1 Illustrates the typical elements of a PRNET.

Each PRU pomes a buffer where packets ae stored until they are

delivered. We shall usually assume the buffer to be infinite. To develop

markovian models of the queueing processes in a PRNET it is necessary to

consider the state of each PRU as described by the total number stored in its
.4 buffer. Many problems, however, may be solved in terms of a simpler (but

non-markavian) state description.

A PRU having a packet ready for transmission Is said to be bus (also occupied,

ready etc...)a a PRU which is not busy is mid to be idle (also empty, unoccupied).

The state of occup.au (business) of a PRNET Is a description of the business status

of each member, In terms of a vector whos i-th coordinate assumes the value 1

iff the i-th PRU Is busy, and 0 otherwise.

Usually the major objective of the PRNET community is to deliver packets to

- destinations, with high reliability in a minimum time.

Let us examine the essential features characterizing PRNETs:

1.2.1.1 Communication channel

The problem of sharing the communicstion channel is the major problem

with which we shall be concerned. Let us describe what "ch=Wnal" means

2
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throughout this dissertation.

The communication medium Is usually a radio channel However some

PRNETa (in the broad sense defined above) may use wire communication

(Mrrc7s]. In fact, ANY medium which can support a multi-accs broadcast

channel will do.

Our point of departure Is precisely that at which the regime of

Communication Theory ends. That Is, we assume that problems of modulation,

coding, synchronization, and the like, have all been solved one way or another.

The channel appears to us as a band stretching in timt to Infinity.

The channel can be slotted time-wise or frequency-wise. That is, members

of the PRNET can identify portions of the channel (thus decide upon their

ownership). The models that are considered In this work use time slotted

*channels. The important feature of time slots is that they are recognized by the

PRUs as the sharmble portions of the communication resource. Slots are usually

@ of a uniform size, that which is required to deliver a packet. Thus the channel

appears as a succession of rectangular slots. We shall make the assumption that

slotting causes only negligible loss of the channel resource. This Is a good

approximation as long as the slots are not too thin relative to the

synchronization time and the maximal propagation delay. Time slotting defines

a global reference system through which users can reach some coordinated

channel usage. First it enables users to reach some agreement about channel

allocation. Second, it reduces the periods of channel waste by interfering

tramissons to half their size for unslotted channel ABRA73].

4
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we further assme that the three types of channel events are pwdsuta

"successul" transmission slot, iLe., a single P1W has been using the slot, an.

"Unused* slot, iLe., no PHU has been tasiig a "Collision", iLe., two or mUwe

PRUs have made an attempt to use the same slot. Colsions wre assumed to be

destructive, iLe., no packet is delivered by a collision slot. We shall urs the
71'

word "idle" to distinguish those slots which are unused because the system is

* - idle, from slots which are unused when the system is busy. The later type of

slots, to be called "empty* are a form of channel waste, while the former

represent normal Idleness of the service mechanism. Figure 1.2-2 depicts our

model for the channel and possible channel events.

SYNCHRONIZATION
OVEMtEAO

- ."000-00 0 a0000 0

1 000000 

100000 

0

I 0 . 0000090
000004 00000

100000 I000 000000000000 00000100000.100000 00
I 00000 00 00000
O00O 000000Go

"SuCMsSB* EMPTV' *OLSO

Figre 1.2-2: Generic Channrel Eivents

The hanel, s vewedin his issrtaIons merely a spatially Gistrbuted

re1SOUrc Which IS to be shared by the PRN=E comunity. The problem Is to



design and analye sharing algorithin- This places the problems (and solUtons)

beyond the scope of communication theorie, Indeed, the problems that-We dad

with are typical to any red-time, decentralizUd, demand-allocation resource

sharing systems. The sharing of other computer network resources such as

distributed memory systems, distributed processing units or, for that matter,

any spatially distributed resources pose similar problems. See [LESS78] for

typical examples of real-time distributed processin as well as further

references.

Simulation and analytic studies show - or instance [TOBA77] -- that the

communication channel Is the critical network resource. That is, small changes

in the amount of channel available or its allocation policy, influence the

performance significantly. On the other hand, changes In traditonal

communication resources such as buffers, have negligible effects upon

performance (a buffer for two packets in each PRU or for an infinite number of

packets, hardly makes a difference [TOBA??]). This is the first major feature in

which PRNETs differ from classical packet-switching networks.

1.2.1.2 Hearing topology

Two PRUs which hear each other are said to be In a hemng relation. Hearing

is a binary relation which we assume to be symmetric. The sumption of

symmetry can be easily removed to get more accurate modelst it is used for a

simplification of the arguments and notation.

The hearing relation may be represented In terms of a hearing graph which

characterizes the spatial distribution of the channel reource. The hearing

graph is subject to a random time evolution. However, we make the asMmptIon

6



that the speed art which the hearing topology changes is very small w.r.t.

Packet transmission time. That is we assume that the hearing topology is

* esmatlaly static.

LZ2iJ Cam ummicatim traffic detomd.

The arrivals of packets to the network are subject to random laws. We

assume that the om niaondemand is burtsf. That is, PEU's channel needs

are irregular, Infrequent and restricted to small time Intervals. Computer

communication traffic is typically very bursty. Burstiness Is a key notion to

the understanding of PRNEs design. A possible definition of a measure for

* burstiness has been recently proposed [AIL&V78, LAM78]. Loosely speaking,

* bufatiness may be characterized through momenta of the arrival processes. k

* first order condition Is that the overall traffic generated over an average packet

deliveryp time should be small. A second order condition should reflect the time

Irregularity of local arrival processes. A possible measure In the spatial average

of the variances of packet Inter arrival times for burstlassa the variance should

* be large.

We model the arrival process at each PRU as a Bernoulli proces whereby, at

each time slot, nature (PPBNEr users) tosses biased colns and decides whether to

generate a packet at each PRU or not -acoringly. Ineednspatially

distributed Bernoulli arrivals serve a a reasonable model of burstiness.

1.2.1. Objective

The objective of the PRllET Is to make an efficient use of the channel so as to

minimize the overall ezpected packet delay.

In the subsequent chapters we consider some typical problems of modeling

7



and analysis of PMlETs. The Study Of PIWES Is In essnce a study of

distributed resource sharing. As such, it has far reachking Iplications to other

problems of computer comucton. The solutions to the problems of PaNErrs

have already stimulated now ideas in such, seemingly unrelated, fields such as

memory organization. With the advent of inraigycheaper

communication and processing tehoo Iest Is expected that many more

Problems of distributed resource sharing will have to be Solved by computer

networks (e4g., adaptive highway traffic-control, adaptive routing of a fleet of

vehicles, adaptive sharing Of Information processing resources). Although this

work Is concerned with problems of pENE3, some methods and results (In

Particular chapter 2, 4 and 5) transcend the immediate setting and Could be

employed to attack other problems of spatially distributed resource saring.

* ~Work towards this goal will be carried in the future.

- 8



M.12 SOCIAL ORGANIZATION OF PRNETS

' The set-of rules that governs the usage of the communication resources by

the PRNET community, is called mmuxkin PeatoL We shall be Interested

Sonly in the laws that regulate and coordinate the usage of the communication

channels this being the critical resource. There is some similarity between the

problem of channel sharing and that of sharing other rare natural resources.

For instance, if transmissions are not coordinated the channel may be polluted

with "collisions". On the other hand, any scheme for a dynamic coordination of

the channel usage must use the very channel to transfer control information.

In extreme cases the channel may be completely wasted by the control

bureaucracy. If a non-adaptive sharing policy is selected the channel will, be

underutilized with many "empty" slots which have been reserved for dormant

users. Pollution, buraucracy, underutlizaton and the lke, are typical

problems faced by the PRKET community. In what follows we shall describe

some of these problems in more detail

1. The pvwo/n of aess schemes

The algorithm through which a PRU decides whether he has a

right to transmit a packet or not, during a given slot, is caUed the

access scheme,

[ABRA73, ABRA73a, KLEI76, ROB973, TOBA75, 3CH076, KAYE77].

2. The decision about access rights is distributed among the

Community members. If the access scheme 1 to be adaptive, the

decisions must be made in rel time (i.e., time between decisions is

of the sme order of magnitude as transmission slots). The problem

9
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Of acces scheme Is thus a typical problem of a real time distributed

decision algorithm.

3. The Problen of routc

Routing is the mechanism to decide which packet goes where, at

any Instant of time. Routing, again, is a typical problem of real

time distributed processing.

A few routing algorithms for packet switching cable networks

have been explored and implemented [GER1,72, GALL??, McQU78].

* ~Yet, the Problem seems to be far from possessing a complete

solution. For instance, consider an adaptive routing algorithm

where network members exchange routing data In order to be able

to adapt. When the network is heavily loaded, should the rate of

routing data exchange, increase or decrease? (Heavy traffic is

when fast ada8ptiity i required; It is desired that status data be

updated rapidly. However, heavy traffic Is when the

comamunication resue are critically required, it is desired that

they should not be loaded with control overhead.)

4. Capecty

* The distributivity of both state oIservations and decisions,

* restricts the ability of the network to cope with the decision

* problem. Some, channel and some time will be wasted to transfer

10



r control and coordination data Another form of time and channel

waste occurs because the decisions taken by the network members

are not optimal EKLEI77]. The problem of characterizing the limits

on the network ability to deliver traffic, is the problem of ca fdty.

The problem is twofold. First, which fraction of the channel

capacity (which is available in the anus of information theory)

can be actually used? Second, which allocation control policies

obtain the capacity bound?

6. Analysis of delay-throughput per[fmmce

From the point of view of queueing theory, PDNETs are but a large

network of Interacting queueing processes. Unfortunately the

Interaction between the different service mecantsms, through

the shared channel, poses a difficult queueing problem. The

queueing processes can no longer be assumed to be ndennt.

The arrivals to one queue depend upon its service process, as well

as service Processes at neighboring queues. In addition work is not

conserved but lost through collisions. The interaction can not be P

eliminated through some simple Jackson-like queueing networks

[JACKX57]. On the contrary, interaction becomes the essential

feature to be captured by any reasonable modeL

Thus we face a queueing problem which i an order of magnitude

more difficult than queueing problems whose solution we know.

[.o+, e .11 _r+.',2. :"-' "2 ..I 2.:ji. . ..



Let us consider a concrete azample of a PZNET to dmntaethe above

* ~issues. Figure 1.2-3 depicts a business cfiuainand a Sequence Of channel

evento for a typical one-hop PamE.
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the absence of a centralized control, if each PlU Is aware of the precise

occupancy configuration, then It is possible to employ a prede ed priority

mechanism to resolve the conflict of access right demands over the slot.

Unfortunately, the assumptions which we have Just made we idwel In practice

no PRU can observe the business configuration. Therefore a well orchestrated

decision of accss rights can only be achieved at the price of time and channel

overhead required for coordination process.

What if each PRU knows nothing at all about the needs of his colleagues? In

this case, to prevent an infinite succession of collisions over the channel, it is

required to reserve some portion of the channel to each FRU according to a

predetermined set of rules. One such rule is round-robin Time Division

Multiple Access (TDMA). I.e., round-robin possession of slots. If the traffic is

heavy, this rule provides an excellent solution. However, if the traffic is

bursty most of the channel is wasted in silence and queusing delays are

unreasonably high.

Another solution to the problem of no Information is to randomized the

decision between transmit or not. Each PRU is equipped with a biased coin;

when he s busy, he tosses the coin and decides whether to transmit or not,

accordingly. This scheme is a version of the Slotted-ALOHA policy [ABRA73].

Randomization Is employed to render lengthy successions of collisions unlikely.

There is still an Implicit decision problem; namely, how to assig transmission

probabilities to the coins. In the absence of any further information it is

required that the transmission probabilities be as small as I/N (N is the total

number of PRUs), to be able to cope with the worst cam of a fully loaded system.

I,.F 13 .



Unfortunately the expected delay is large and channel slots are wasted In both

collisions and empty slots. Thus it is necessary to employ further information,

if the system Is to be efficient. The transmission probabilities should be adapted

to the state of the system. The need to adapt requires a control e to

exchange Information and coordinate the distributed decisions, loading to a

whole class of controlled ALOHA policies

[LAM74, FERG75, CARL75, FAYO77, GERL7].

Between no information and perfect information, a spectrum of Information

structures exists. It is possible to consider an Intermediate Information

structure and search for the optimal adaptive policy to decide access rights on

the basis of this information. For instance, suppose the PRUs are aware of the

number of busy PRUs but not of their identity. What then is the best decision

rule? This particular Information (Le., the number of busy PRUs) is assumed by

some controlled ALOHA policies. However, as we shall see, the optimal ALOHA

* policy is not the best decision rule, given that information. In fact We Shall

derive the optimal solution and use it to develop a new clas of working

decision algorithms. Our algorithms use estimates of the total load to decide

access rights and exhibit smooth adaptivity to the traffic load.

Next comes the problem of capacity. Suppose we develop an algorithm to

decide access rights. Then how much traffic can the network handle? To

answer the question we can Imagine an experiment where the level of traffic is

Increased gradually, following some distribution of packet arrivals. At some

input rate the queues in the network can no longer be emptied by the servic

Imechanim. The queueing process turns unstable. A reasonable notion of

14
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capacity is provided by the threshold nput rate at which the network can no

longer sustain the traffic. Thus, the capacity problem is directly related to the

stability problem of the network queueing process. At what traffic level dam

the queueing process become unstable?

Another way of looking at the capacity problem is to consider the network

under a heavy traffic, Le., when all PRUs are constantly busy. How much

traffic can the network service? The two views may produce two different

notions of Capacity, as we shall an. This, seemingly paradoxical result follows

from the fact that there may be many paths by which the network may choose

to become unstable. Sometimes the optimal path to instability will turn only

one queue heavily loaded, while the rest are empty most of the time. Therefore

it Is not necessry for the network to satisfy the heavy traffic assumption

when it turns unstable.

The most Important performance measure for a network is its

delay-throughput behavior. What is the expected delay as a function of the

throughput? This question as well as the following questions are the subject of

analysis of the queueing processes In the network. How long are busy periods?

What Is the effect of changing buffer sizes or their allocation?

Consider the queueing process In the buffer of a generic network member.

The access scheme Is merely a service process which enables the PRUs to share

the server (channel). However, through collisions, the different queues

Interact and lose service time. The network queuelng process Is not work

cnserving the amount of work which is required to serve a packet depends

upon the state of the queues. In fact, the whole idea of channel sharing Is to

15



employ the channel according to the service needs of the users. The analysis of

the delay-throughput riformance of eve simple access scheme models poses

very difficult mathematical problems. It is possible to simplify the odels to a

point where Interaction between the queues is completely ignored. However,

- ~when we seek to understand the effects of collisions on the perfrmne WS

* have to face the problem of Interaction.

Ii



1.3 SCOPE OF THIS WORK

.. 1 THE APPROACH

PRNETs are large scale systems whose behavior is determined by numerous

parameters. The problem of modeling and analyzing the performance of the

communication protocol resembles the many-body problem of physics. That Is,

we try to solve for the behavior of the system from the behavior of its atomic

components. However, whereas physicists are Interested in description we are

in an urgent need of prescriptions. Particles have a built In interaction protocol

to minimize the total energy of a physical system; PRUs are yet to be endowed

with a communication protocol to minimize the overall expected delay.

Problems of modeling, analysis and optimization of decentralized decision

mechanisms seem to have no satisfactory solutions yet (see the recent special

publication of the IEEE Tansations on Autom ic Conftol, Vol. AC-23, number 2,

April 1978, dedicated to these problems). To quote the conclusions of the major

survey article [SAND78] (ibid.):

"Our most fundamental conclusion, after surveying a vast amount
of literature, is that..., the question of what structures are desirable
for control of large scale systems has not been addressed In a truly
scientific fashion. In our opinion, we do not believe that the existing
mathematical tools .... are powerful enough to define a preferable
structure for decentralized and/or hierarchical control. First, we do
not believe that it is reasonable to seek a single best optimal
structure. Rather, any future methodologies should strive to define
sets of distributed Information and control structures that are
preferable to others. Second, a unified theory of decentralized
control should explicitly include not only traditional index of
performance... but In addition

a) the cost of communications

b) reliability Issues

17



c) the cost of computer interfaces

d) the value of Incomplete and/or delayed information

e) a formal measure of system complexity.

To develop such a desirable methodology we may have to develop
different notions of optimality, principles of optimality and notions
of optimal solutions."

A difficult problem of choice confronts the researcher. On one hand it is

required to deliver practical solutions for the problems. On the other hand our

ability to analyze the performance of a communication protocol is very limited.

A compromise is a necessity. We feel that no better words could describe the

underlying convictions that lead to our choice of a compromise, than the above

quotation. Few additional words are required to describe our specific choice of

compromise.

First, we have tried to choose models which are as simple as possible to

capture the features of interest. This choice reflects our conviction that at this

stage of knowledge, principles and approaches should be developed rather than

complex insoluble models. We have tried to make the models trasarent for

the clarity, applicability, and elegance of a solution is an Inverse function of its

complexity. Second, In presenting the problems, assumptions and solutions, we

have tried to expose all sides of the problem not only those captured by a

particular set of assumptions. The solutions are supplemented by discussions of

practical implementation, limitations and open problems. This reflects our

belief that at this stage of knowledge any attempt to present a simplistic

solution to one aspect of the problem, which ignores other intrinsic problems Is

misleading. Third, most of the solutions were first derived mathematically and

18



Only then understood on an intuitive basis. in presentation we prefered a

reverse order, We have tried to avoid a 'theorem-proof" approach for we

believe that Hilbert's plan to represent mte atic a collection of formal

objects. was not meant to include problems ofoesgNeerIug An exception Is

chapter four; the Problem of Interactizg queneing Ircee seem to require a

complex mathematical machinery which we evulu only reduce to a set of

drawings. While this reduction is a great simplification of the problem, further
study Is required for the solution to be fully understood ("uierigly

speaking").A

TO suMMarize, the approach we have chosen is to expose the full scope of the

Problems and point out alternative methods of attack, a well as difficulties

which can not be properly addremed by existing mtooois

r . 1z
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I..2 ADAPTIVE ACCESS SCHEMES

The problem of adaptive access schemes is considered in chapter two. Our

point of departure is the Information which is used for decision of access rights.

We characterize some typical categories of information structures used for

distributed decisions. Then we assume a particular setting where each PRU is

aware of the total number of "busies" and uses this information only, to

"-- determine the access right. This we call symmetric homogeneous Information;

It Is more than no Information (much more as far as ability to adapt goes) and

less than perfect Information (much less as far as control overhead is

concerned); also, some versions of controlled Slotted ALOHA require precisely

this Information. Under this assumption we develop an optimal stationary

access policy.

We call our scheme: the Urn scheme, for, as far as each PRU is concerned, the

system looks like an urn with black (for busy) and white (for idle) balls, from

which a number of balls is to be drawn to maximize the probability that the

sample contains precisely one black balL The urn scheme performs better than

optimally controlled slotted ALOHA and better than TDMA. Under light traffic it

performs similarly to ALOHA. as the traffic Increases it converges smoothly to

TDMA. In particular, there is no limit on the useful capacity of the channel;

when the load increases "collisions" and "empties" e virtually eliminated and

the full capacity Is being used.

The ideal urn scheme may be approximated by a number of practical

Implementations. We show how symmetric nformation may be practcally

acquired at a minimum cost in terms of control overhead (Le., the mount of

20



channel control overhead does not depend upon the sin or the topology of the

PRNET, It l fixed). Urn schemes permit collisions and errors on the part of the

decision makers. They are robust vis-a-vis both type of problems, erors in

estimating the number of busies and errors resulting from unconcerted

distributed decisions.

The performance of the urn scheme has been both analyzed and measured

from simulation. We examine the results, comparing the performance of Urn

schemes to that of TDMA, optimally controlled Slotted-ALOHA and Perfect

scheduling (lower performance bound).

JA

.1.
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1.L.3 INTERACTING QUEUEING PROCESSES

The problem of interfering queueing processes is the subject of the third and

the fourth chapters. We consider the problem in a limited setting of two

Interacting PRUs. However, the onsiderations ae general enough to serve as a

basis for solving general problems of Interacting queues in discrete time. (it is

possible to generalize the methods that we develop, to solve the general discrete

time G/G/2 problem. This will represent a major contribution to queueing

theory and is particularly significant n the context of interacting queues in

computer networks.) Work towards this goal will be carried in the future.

In chapter three we consider approximate methods to solve four different

interaction models of two buffered PRUs. The models are ordered by the level

of Interference between the arrival and the transmission processes at the two

PRUs. The fourth model represents a "maximal Interference" model (i.e., the

two transmission processes interfere with each other and with the two arrival

processes, which again nterfere with each other) for which n exact solution

is derived. The solution extends to a maximum interference model for any

number of PRUs. The maximum interference model possesses some Interesting

singular features. Namely, it is possible for the network to choose a

transmission policy which obtains perfect scheduling, because of the structure

of the hearing topology.

The main finding of chapter 3 are: first, that simple mathematical

approximations which eliminate the dependencies between the queueing

processes (so that they may be solved as a collection of one-dimensional

queueing problems) do not provide good results. This category includes

22
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heavy-traffic, low-traffic and diffusion appiaioUs Moreover, we do not

posss any mathematical method to determine the domain of applicability of

the approximations. Therefore, a suitable mathematical approximation can only

be developed by examining the exact solution of the two-dimensinma problem.

Second, physical approximations (i.e., those which are obtained by solving

for Perturbed Ltfrferee topeogies) can provide an excellent approximation to the

delay-throughput analysis. The topology of intrferece may be partially

ordered by "increased interference" between PRUs. for the case of two buffered

PRUs, beyond a certain "Interference threshold" the delay-throughput

performance curves were identical (i.e., the delay-throughput performance is

not sensitive to perturbations of the topology of interference). Therefore, since

the extreme model of maximum interference can be solved exactly, its solution

can serve as an excellent approximation to other models which experience less

interference. The existence of threshold behavior for larger system will be

explored n the future.

We use Kingman's algebraic representation of queueia theory [KING63] to

show that the two dimensional queueing problem can not be solved using the

methods of classical queueing theory. A new approach is required.

In chapter four we develop new mathematical tools to solve the problem of

interaction. The method is essentially a Wiener-Hopf technique over some

general Rlemann surfaces. The connection between problems of boundary value

problems of classical physics and boundary problems of random walks (which is

what queueing theory is all about) is the basis for the solution of one

dimensional queueing problems. In two dimensions the problem becomes much

23



more difficult and it is required to employ tools of algebraic geometry to solve

- it.

True, from a theoretical point of view the problem is solved. However, from

a practical point of view the solution algorithm is too complex to generate

important information about the behavior the system. Nevertheless the road is

now paved to develop a systematic method of approximating the solution under

some asymptotic conditions such as heavy traffic. Further work in this

direction is in progress.

24



1.3.4 CAPACITY PROBLEMS

The fifth chapter is concerned with problems of capacity. We consider the

capacity problem for a tandem. The first problem is to define the notion of

capacity precisely. If we choose to define the capacity as the threshold input

rate at which the queueing processes turn unstable, we get a dsfinition which

agrees with our needs, but which is not too useful as far as actual computation

is concerned. For, unfortunately, very little is known about the stability of

multi-dimensional Markovian processes.

Another approach is to try and define some special notions of capacity, based

upon the expected behavior of the network as the load grows. A typical

assumption is the heavy-traffic assumption. Namely, we wish to compute the

stability threshold when all queues are kept busy all of the time. The heavy

traffic assumption reduces the capacity problem to that of solving nonlinear

recurrence relations.

We solve the recurrence relations for the tandem through a linearlztiou

trick. We compute the heavy traffic capacity of a tandem as a function of its

length and its asymptotic behavior as the tandem becomes infinitely long. The

solution process may be easily applied to tandems which are connected to form

more interesting network structures.

Next, we find that the heavy traffic capacity is indeed a lower bound on the

capacity of the tandem. The actual capacity is about twice as much, and may be

achieved through a "rude" behavior where each PRU transmits with probability

one when it has a packet. The ability of the network to sustain such a policy,

without getting into an infinite succession of colisions and complete blocking,
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is a direct result of the singular structure of the tandem heartig topology.

Other singular hearing topologies ae presented.

Another approach to the problem of capacity is to examine policies which

optimize throughput. This approach views the capacity bound as that which

results from the restriction of the class of available policis. Therefore the

results which may be obtained can be expected to be of a more general nature.

Our idea is to replace the notion of a centralized objective with that of a

decentralized objective. We employ ideas taken from mathematcal economics

to define a notion of "decentralized optimality*. We obtain necessary conditions

for a policy to be optimal, in the form of a "rule-of-thumb". We show that the
optimality conditions include Abramson0s con of optimal

Slotted-ALOHA transmission policies [ABRA73], as a particular Instance of the

rule when the traffic is heavy. In particular, our conditions yield identical

heavy-traffic capacity results for one-hop networks. Moreover, the optimalty

rule also characterizes the optimal Urn-scheme and the optimal (rude) tandem

behavior. Therefore, the rule has a wide range of applicability.

The optimal decentralized policies are characterized in terms of Igrangan

multipliers which represent the global "value" of a successful slot usage by

-network members, each member having a pre-assigned value. If a global

coordination scheme is being used to coordinate the values, then together with

the local optimality rule an effective hierarchical access control algorithm may

be implemented whereby local decisions require only the information contained

in the acknowledgments and the "values, to decide their accss rights. It Is

shown that the necessary conditions c triz both optimally controlled
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ALOHA and the optimal Urn scheme. Thus both muchanlisma may be

implemented In terms of a unified rule of behavior. This striking -generality

will be explored in future work.
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1.4 UTURERESEARCH

1.4.1 ADAPTIVE ACCESS SCHEMES

The problem of designing practical adaptive access schemes for a multi-hop

network needs to be further explored. In the absence of a suitable decentralied

decision theory, we took a practical approach towards the problem. Other

solutions should be developed before a suitable theoretical basis may be

established. In particular, one would like to have a quantitative model of

"real-time" decisions, the class of all decentralized strategies, the process of

decomposing the decision algorithm into hierarchical decision environments

and the process of information exchange and coordination of decisions.

From a theoretical point of view, one would like to have a suitable theory of

team decisions. Computer networks are already turning from yet "Just

packet-switching mechanisms- Into decentralzed processing mechanisms,

which employ the distributivity of the communication and processing to

achieve a common goal. For example, networks of distributed sensors which

will employ the communication and processing capabilties, to integrate sensors

observations Into a distributed tracking algorithm, are currently under study

[CMU78]. Such networks may be considered as communities of intell1gent

automata which may cooperate towards a common goal. The problem of

adaptive access schemes is but an Instance of the problem of community

decision-making In read time. One would like to have a theory which cam guide

us towards efficient solutlons to the gneral problem.

a-s
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1.4.2 ANALYSIS OF RESOURCE SHARING PROCESSES

The price of inelgasIs constmntly decreed"n while the price of other

rMuc In particular communication reources, is Increaing. Effective

rneaource, shari" algorithms can be ipentd In terms of

computer-mtroiled decision mechaasms. The problem of analyzing the

performance of interfering queueing Isacnmw Is a key to the undersanding of

sophisticated sharing mechanisms. Classical queuing theoy does not provide a

sufficient set of tools to wive the problem of ierenc.This has been. our

major moiaIin exploring some typical interfering service mehnssOf

Fture research shtould. be carried out to generalize thes mathemastical

machinery to attack the general ntrerc problem. The idea should be to

develop a sufficient understanding of the geometry Of the- -

problem so that practical approximate solutions can be carrie out with some

ease.

The effort should be directed towards muan gbazel *of the' inteferce

problem, and towards a physical intepretation. of the solutions.



1.4.3 THE PROBLEM OF CAPACITY

Our discussion of capacity has two objectives. First, to explore possible

definitions of the capacity notion In a multi-hop environment. Second, to

explore the combinatorial structure of the notion of capacity.

Future research should be carried out to explore the relation between the

geometry of hearing and capacity (see [SYLV78] for many interesting results in

this direction), between the routing mechanism and the capacity and to define a

notion of point to point capacity in a PRNET. A deeper problem is that of

establishing necessary conditions for stability of interfering processes so that a

more accurate notion of capacity can be developed (rather than the heavy-

traffic capacity which we use).

A problem which is completely open is to characterize the Intrinsic

limitations on channel usage which are imposed by the distributivity of the

information and decisions required to resolve the conflict of access rights.

A possible approach is to replace the notion of centralized optimality with a

family of decentralized performance criteria which approximates the global

objective monotonically. For instance, start with the notion of Pareto-optimal

[LUCE67] throughputs and consider the allocation of slot "value" to different

PRUs, as the index of decentralization. If the family of optimal behaviors can be

indexed by a proper "decentralization" parameter, then we should be able not

only to solve the general problem of capacity but also, we could develop optimal

decentralized allocation policies.
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1.4.4 SUMMARY

The problem of decentralized adaptive control mechanisms in general, and the

problem of adaptive decentralized allocation control of spatially distributed

resources in particular, will most probably be among the most important

problems which dominate the field of computer networks. Future research

should concentrate in developing both practical solutions, as well as solid -4

methodologies to analyze and optimize the performance of the control policies.

A
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2. ADAPTIVE ACCESS SCHEMES.

2.1 THE PROBLEM OF AN ACCESS SCHEME.

2.1.1 PRNETS POSSESSED BY A DAEMON.

Let us consider a PRNET serving a population of users, whose demand for a

communication-path service Is random. The communication protocol is

responsible for the control of the allocation of the channel resource, i.e.,

time#bandwidth, among the demanding packets. The allocation policy consists

of the following decisions:

1. Which PRUs may transmit at each moment? We call this decision

the access r i ght.

2. Which packet in each eligible PRU gets transmitted? We call this

decision the pr j or i ty scheme.

3. For each transmitted packet, to which PRU is it routed? We call

this decision the rout i ng dec i s ion.

The objective is to minimize the expected delay of packets.

We use the name access scheme to designate the algorithm responsible for the

first decision. In what follows we Ignore the priority assignment completely

and touch the routing decision only superficially. Both problems are

understood in some limlied sense. Moreover, in the context of PRNETs the first

decision seems to be the crux of the design problem. Our main concern,

therefore, is the problem of designing an access scheme.
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Any access scheme Is basically a scheduler of the communication channel

[KLEI77]. That is, a service algorithm for communication path demands. The

allocation of channel access rights to the different PRUs poses five major

problems.

1. Resource waste:

The transmission of one PRU may be "zapped" by the transmission

of another. Therefore, if two conflicting PRUs decide

simultaneously that they have access rights, the channel is wasted

in a "collision". If, on the other hand, each busy PHU decides that he

does not possesses an access right, then the channel is wasted in

silence; i.e., an "empty" slot.

We consider collisions and empty slots (that is, only those empty

slots that could have been used) to be allocation errors. Both error

types stem from a disparity between the allocation of access rights

and the demand for those rights (as reflected by the business

configuration).

2. Bursty traffic demands:"

The demands for a communication-path service are random and

bursty. Therefore it is impossible to establish a predetermined

policy for allocating access rights which meet future demands

properly. That is, any predetermined decision mechanism

introduces many allocation errors (i.e., collisions and empties)
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because of the unpredictable state of demands.

3. Distributed state information:

The information about the instantaneous state of the

communication demands is distributed among the PRUs. A typical

network member possesses only a limited Information about the

needs of his comrades. Therefore, the information required for

perfect decisions (i.e., perfect scheduling of the demands with no

allocation errors) is not available a-priori to any decision maker.

4. Coordination:

A decentralized decision mechanism requires that the different

PRUs coordinate their individual choices of strategy. Even if all

PRUs have had perfect state information, they would still produce

allocation errors if they do not coordinate their individual

decisions. The situation is similar to that which arises when two

people try to cross a narrow door without coordinating their

movementsl if both are polite (i.e., choose an "after you" policy)

the door is left empty if both are "rude" (i.e., try to push their

way) they collide at the door, no one crosses.

5. Information exchange is expensive.

To solve the problems of distributed information and coordination
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of decentralized processes, the PRUs may wish to exchange control

information. An information exchange process may be expe'lve

in terms of both delayed decisions, and consumption of the very

communication resource, that we wish to utilize by the control

overhead.

In short, It is required to have a demand-allocation service algorithm, but the

ability of the PRNET to process such an algorithm is limited by the

distributivity of both the information required for decisions and the decisions

themselves.

To develop some insight into the problem, let us examine a few idealized

approaches to the solution.

The first approach is to employ the services of a daemon. The daemon is

aware of the instantaneous state of the queue at each PRU. It has full

sovereignty over the network resources. The daemon instructs each PRU when

and where to transmit. The objective of the daemon is to minimize the expected

delay of packets.

Alas, even daemons have problems solving NP-hard problems such as the

scheduling problem. When the network is large the computational complexity

of optimal channel scheduling is practically Intractable.

Being unable to solve the optimal scheduling problem, the daemon may

choose a suboptimal solution. Let us assume that the daemon decides the

routing independently of the channel access right. Once routing has been

decided, the daemon may wish to allocate transmission rights over the channel
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so that no collisions occur. Let us see what it takes for an access scheme to be an

optimal collision free scheme.

The problem that our daemon faces is that of separating the busy PRUs into a

minimal number of non interacting sets. Specifically, in a multi-hop network,

a PRU PR1 is said to interfere with another PRU PR2 , if PH1 is heard by the

immediate destination of the transmissions of PR2 . Interference is an

asymmetric binary relation. Consider the graph of interference relation

between the busy PRUs. A set of busy nodes which s collision free is an

independent set (HARR69]. We wish the set of PRUs which are given access

right to be maximal. That is, it is impossible for any other PRU to Join without

a collision to occur. Finally for optimality It is required that the set of PRUs

which are given transmission rights is of a maximal cardinality. For if it were

not maximal, then a larger number of packets could have been serviced during

the same slot. Therefore we could have had a faster service mechanism.

To summarize our finding, if the daemon wishes to develop an optimal

collision free access scheme (for a given routing mechanism), he has to solve

another NP-complete problem (KARP72] that is, the problem of finding an

independent set of maximal cardinality. The best known algorithm [TARJ6]

requires o(2 n/3) steps, where n is the size of the graph. Therefore optimal

collision free access schemes will usually be computationally infeasible;

suboptimal solutions should be developed.

We may continue the reduction process until the daemon will face a

suboptimal goal which may be solved in a reasonable time. For instance,

routing may be along a minimal spanning tree, where the "length" of each edge
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is the size of the queue in front this edge. Conflict resolution may be obtained

by allowing any subset of non-interfering busy PRUs to transmit. Both

problems may be solved in a polynomial time. Other suboptimal policies may

also be considered but, the sad conclusion is that even daemons cannot process

an optimal real-time allocation control policy.

.4-
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2.1.2 EXORCISINC THE NETWORK DAEMON.

In the previous section we saw that optimal daemons are, computationally

speaking, unfeasible. Now that we are ready to settle for suboptimal solutions,

the very use of a daemon is questionable.

First, daemons are not reliable. Leaving the control of the network at the

discretion of a daemon may result in a demonic behavior upon failure. Second,

even suboptimal daemons are not free nowadays. In fact even daemons with

modest requirements of information for decision have to use a finite time to

gather the information and to make their decisions known to the PRUs. This

limits the ability of centralized decision making to adapt. By the time the PRUs

learn about the "suboptimal" decision of the daemon, it may already be obsolete.

The speed of adaptivity is limited by the speed of control information

propagation. Third, the exchange of control information employs the very

resource to be controled. Thus, through the coordination process the daemon

may obstruct the very channel which he tries to preserve. The conclusion is

that the network daemon should be exorcised. The decision making process

should be distributed among network members.

Exorcising the daemon is anything but an easy task. It requires that we solve

the coordination problem of the independent decisions made by network

members. The ability of network members to arrive independently to an

harmonious set of decisions is limited by the amount of information that each

member possesses about the status and the decisions of his fellows. The relation

between the time spent to coordinate the decisions and the performance of the

resulting algorithm, should be the subject of an as yet undeveloped theory of

L2
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coordination complexity (see however [SPIR77, DALA77] for an initial attack on

the coordination complexity of finding a minimal spanning tree - for routing -

in a network). Let us describe some of the problems that we expect such a

theory to resolve quantitatively.

First, distributed adaptive control algorithms usually involve two

interwoven hierarchies; space and time. That is, some parts of the algorithm

adapt rapidly to instantaneous local events; some parts adapt to the short range

statistical behavior of the immediate environment at each decision maker; some

parts adapt slowly to long range statistics of the global network state. How

should we characterize the class of all hierarchical control strategies? How

should we correlate the time-space hierarchy to the distributed observation

process?

Second. distributed state observations imply that each PRU sees a different

part of the global picture. It is possible to exchange some information between

neighboring PRUs to coordinate the observations. The exchange of information

enhances the observation of each PRU; however, it has a high price. How

should we design low cost, effective observation exchange mechanisms? For a

given amount of acceptable rate of observations updates, what is the best

information to exchange? What is the best usage of the information available

to each decision maker? What are the performance bounds due to the

distributivity of the observation process?

Third, the common objective entails that the PRUs try to reach a maximally

' harmonious set of decisions. How should that be done? What are the

performance bounds due to partially coordinated decisions (because of the

. 39
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distributivity)? What is the optimal solution to the problem of partial

coordination?

Finally distributed decision algorithms may be very sensitive to small

perturbations of the observation and coordination processes. How sensitive is a

given algorithm? How can we reduce sensitivity and increase the robustness of

a given algorithm?

The closest models to attack problems of this nature, are those used in

mathematical economics. One could easily see the similarity of our problems to

those of team decision theory. However the theory of team decisions seems to

be yet in its infancy. The book by R. Radner and the late J. Marschak [MARS7Z]

is an excellent reference. Presently the theory hardly provides the tools for

attacking the problems presented above. Moreover, it does not provide a

characterization of the optimal decision laws (beyond some simplistic Bayesian

decision schemes) and the models which it uses pose insurmountable

combinatorial difficulties.

In the absence of a suitable theory, we have to apply both, intuition (+

analysis) and measurements, in order to develop suboptimal, adaptive control

algorithms. In so doing, we shall try to adhere to the spirit of team decision

theory.

The need for adaptive control is particularly acute in the case of PRNETs

serving a bursty population of users. Indeed, a deterministic allocation of the

channel such as Time Division (TDMA), or Frequency Division (FDMA); will

waste most of the channel most of the time. An arriving packet has to be
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satisfied with its small fragment of the channel, while most of the channel is

reserved for dormant users.

On the other hand, If we try to adapt the allocation of the chainnel to the need

of the users, imperfect distributed decisions may lead to the consumption of the

resource by colliding packets. We would like to develop access schemes that

adapt to both the immediate needs of users and to the total load on the system.

Adaptivity should be obtained with only a minimal exchange of coordination

messages. Finally, the access scheme to be developed should be decentralized and

robust.

In what follows we develop a new class of adaptive access schemes based on

one scheme which we call the Urn scheme. Our schemes follow the above

guidelines and use only minimal information and coordination. It is thus

possible to use them for multi-hop networks, where most known access

schemes are either unimplementable or non adaptive. Moreover, we shall prove

that our Urn access scheme is the best possible among all schemes in which the PRUs may use

only symmetric state information for decisions.

Our approach is basically to reduce the information available to the network

daemon, then exorcise the daemon, leaving the decision making to the PRUs.
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2.1.3 COMPARISON WITH PREVIOUS WORK.

The literature on the subject of access schemes Is rich [1LE177]. Traditional

channel allocation policies use a fixed, predetermined allocation policy, such as

Time and/or Frequency Division. Deterministic apriori channel allocation is an

excellent service policy for a steady, predictable, traffic demand. However,

when it comes to servicing the traffic demands of a computer network,

predetermined channel allocation is a poor way to serve such bursty traffic.

The servicing of a bursty communication demand requires that the allocation

policy adapt to the immediate need of users. This has been achieved, to some

extent, by the ALOHA policies [ABRA72, ABRA73, ROBE72]. The ALOHA

allocation of the channel is obtained by a "blind channel grabbing" mechanism.

*That is, each PRU may decide to grab the channel and transmit a packet. To

resolve conflicts between users which try to grab the channel simultaneously, a

randomized retransmission policy is employed when conflicts occur. The

. ALOHA policies constitute an ingenious allocation policy when the traffic is

very tow. However, even for a low traffic, ALOHA policy is unstable

[LAM74, FERG75, CARL75]. When the population of users is large the collisions

will eventually build up and the channel becomes congested.

Some control mechanisms have been proposed to prevent ALOHA schemes

from becoming unstable [LAM74, FERG75, FAYO76, GEAL77, KLEI78]. All these

schemes require extra information about the state of the channel. Even with

* these built in controls, the ALOHA schemes can utilize at most 1/Ze (-36.) of

the channel, if the the channel Is unslotted, and I/e (-18%) if the channel is

slotted. It cannot handle heavy traffic.
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The limitations of "blind grabbing", i.e., instability and low capacity, caused

a search for better schemes. Some of the schemes that were considered are

simple improvements of ALOHA policies. The idea is to permit grabbing but

replace blindness with as much insight, that a PRU may get through listening,

as possible. This category includes Carrier Sensing and Busy Tone multiple

access schemes [TOBA75]. The success of such schemes depends upon the ability

of a PRU to use the information gained by listening to the channel at his place,

to Infer about the state of the-channel at his destination. If the hearing graph is

a complete graph (i.e., all PRUs hear each other) Carrier Sensing is a good

- solution. However, if the hearing topology is different, sensing is not enough.

At the other end of the spectrum there is a collection of schemes which use a

perfect state information to allocate the channel. This category includes

reservation schemes, polling, MSAP, etc... [ROBE73, KLEI77, SCH076]. To gain

perfect state information, these schemes require a subchannel for

" announcements and control information. The deficiency of these schemes is the

over-organization. First, too much time and channel may be consumed in order

to coordinate the allocation of transmission rights. Second, the control

subchannel needs to be shared too, often requiring a collision free multiple

access scheme to the control subchannel. Third, the control information is

usually required to be delivered perfectly, introducing a strong sensitivity to

errors over the control subchannel. Finally, the amount of channel used for

control is a monotonic function of the total system size (or the number of busy

PRUs). Perfect information and perfect allocation require a complex centralized

control mechanism. Therefore, these schemes are unsuitable for a multi- hop

PRNET and may possess a low robustness even in a one hop environment.
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Still another class of schemes is that of "learning schemes". The PRUs learn

about the state of the system through trial-error mechanisms. This category

includes the probing schemes of J. Hayes [HAYE77] and tree mechanisms of

[CAPI78]. Both schemes are essentially similar. The state of the system is

learned by the members through the history of collisions. The resolution of

conflicts is eventually achieved by a binary search technique. Learning

"~: schemes have advantages in an environment where the information used in the

learning process may be available to and trusted by the decision makers. The

reliability of multistage decision processes decreases exponentially in the

number of stages. Therefore it is expected that learning schemes may not be

robust. However, the question of reliability is yet to be solved.

Apart from the question of reliability, it seems that learning from the history

of collisions provides only a small improvement over Slotted ALOHA. For

Instance, the capacity of the system improves to 0.43 from 0.36 [CAPI78J. This

shows that extra information Is required if we are to Improve ALOHA

significantly.

Recently, the invention of new schemes has become a fad. Thus, the

Introduction of a new class of schemes requires an apology. First, most adaptive

schemes are unsuitable to serve in a multi-hop PRNET, the main problem being

over-organization. Second, variants of ALOHA schemes, that can be easily built

into a multi-hop PRNET, require control and still do not adapt properly to a

heavy or even medium traffic. The problem that we tried to solve was this: can

one develop a scheme which reqpres the same control Information as ALOHA, retains the same

simplticity and robustness, but adapts better? Our Urn scheme seems to provide a

44



- - p . . $ -- -v.

positive answer and can be proved optimal (among policies using symmetric

state information). Third, we wanted to understand the relationship between

the amount of information used for decision and the performance. How well

can a PRNET perform when the allocation of the channel is subject to errors due

to partial state information? As far as this deeper question is concerned, we feel

that we are still far from the answer.

Our proposed Urn scheme uses the same information that some of the

controled ALOHA schemes use but performs significantly better. Indeed, under

light traffic the performance of the Urn scheme converges to that of ALOHA;

however, when the traffic is heavy the Urn scheme converges to TDMA. 'When

the traffic is medium the Urn scheme gives better performance then both

methods. Also, our xcheme permits imperfect allocation, i.e., collisions and

empty slots, therefore retaining the robustness of the ALOHA schemes. Finally,

the Urn scheme does not impose a limit on the useful capacity of the channel; in

heavy traffic it is possible to utilize the full capacity. All of the above

statements remain true even when the number of PRUs grows to infinity.
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2.2 THE URN SCHEME

2.2.1 HOMOGENEOUS. SYMMETRIC INFORMATION.

In what follows we shall consider one-hop PRNETs synchronized to slots

whose duration equals packet transmission time. At each time slot t the state of

the service demand is completely described by the vector Qt(QJ,Q ....... ,0k),

where Ot is the number of packets queued for service in the buffer of the i-th

* PRU PRi at the begining of slot t. N is the total number of PRUs in the system.

" The decision, which PRUs get the right to transmit in the next slot, is our main

concern. Let us consider the major elements of the decision making process.

2.2.1.1 State Description.

A good choice for a description of the state should contain all the relevant

details which influence the queueing process, so that it may be described as a

Markov chain. The process Qt can serve this purpose if we make the

assumption that both, the service and the arrival mechanism are memoryless.

In particular, we preclude all decision schemes which may learn from the

history of Q t.

The state vector Qt, contains all the information which is sufficient to

generate a Markovian description of the queueing process. However, this

information is more than that which the decision of access rights actuaUy

requires. The information which is relevant to the decision making process is

described by the state of occupancy vector Bt4(BJ,B, ..... Bk), where Bi-sgn(Q0)

assumes the value 1 when PR1i is busy and 0 otherwise. Unfortunately even

this information is only partially available to the decision makers; apriori each

PRU knows his state only.
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2.2.1.2 The Set of Available Strategies.

At each slot a busy PRU may decide to transmit or not. These are the only pure

strategies available to him. A randomized strategy for the i-th PRU, PRj, is the

conditional probability PI that he decides to transmit at slot t given that he is

busy. Looked another way, Pi may be considered as the unconditional

probability that PRi has a transmission right over slot t; he transmits iff he

possesses both a packet ready for transmission and a transmission right. The set

A[ (0,1 ]N is the set of all instantaneously available network strategies. A

decision strategy is a map of the information used by the decision makers into

the set A. To describe the set of strategies we should specify what we mean by

"information used by the decision makers".

2.2.1.3 Objective.

We replace the objective of minimizing the expected delay with that of

maximizing the throughput. This last objective greatly simplifies the

argument and the computation. It is possible to show that the two objectives

fre equivalent under some general assumptions on the nature of the arrival and

service processes. We shall not dwell upon the details of the proof. However,

the idea is quite simple. Indeed, if the service mechanism (the access scheme)

was lossless then the overall expected delay would have been invariant to

changes in the service priorities (which would have been the only free

parameter of choice). Such a result is a simple expression of conservation laws

[KLEI76]. When the service may be lost (say, in the form of "empty" and

"collision" slots) we need a generalization of the conservation laws in the

following form: a priority scheme minimizes the overall expected delay iff it

maximizes the expected rate of service, i.e., the throughput. The derivation of
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conditions under which this generalization is correct, is beyond the scope of

this disnertation and left for future research.

(A proof may be obtained if we consider the structure of the evolution

equation of the queueing process ot:

Qt+ -Qt+Ct.St

where Ct is a vector whose i-th coordinate describes the number of packets

arriving to PRI at slot t; St is a binary vector whose i-th coordinate is 1 if PR1

delivered a packet successfully at slot t (i.e., the instantaneous throughput).

The access scheme can not affect the value of Ct. The only control that we

exorcise over the network is through St. The objective of minimizing the

expected delay is identical to that of minimizing the expected number of queued

packets, by Litttle's result [KLEI75]. The later objective can be expressed in

terms of a minimization of the expected value of JStJA .,SIi, by arguments

identical to those of J. Marschak and R. Radner [MARS7Z] (chapter7).

2.2.1.4 Information Used by Distributed Decision Algorithms.

In deciding the best strategy at slot t, the decision makers can only use the

state information available to them. However, a PRU may decide not to use all the

information available for him. This is the case, for instance, when the use of

some details will not improve the performance significantly while increasing

the computational effort by far. Therefore we choose as our point of departure

to consider the information that an individual PRU actually uses for decision at

any given time slot.

The information which s used by each individual may be classified under
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two categories*.

a. State information:

Each member of the community observes some function of

the state of the network. Network members may acquire

further information through a limited exchange of

messages.

b. Coordination information:

In order to reach harmonious decisions, network members

should have some information about the decisions taken

by their fellow members. Such information may be made

available through some limited information exchange

between members, a predetermined set of rules, or a

combination of both.

It is possible to lump the decisions and the state vectors into one large

"augmented state". We choose to separate the two momentarily, only to

demonstrate the Importance of the homogeneity assumption to eliminates the

needs for cooidination.

The state information which PRj uses for his decision at slot t, may be

described by his subjective probability measure over the states of occupancy.

We call this probability measure, Wi: the information measure of PRi . In what

follows, we shall describe our assumptions about the Information measures Wi.
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Our first assumption is that of homogeneity. That is, the information which each

PRU uses for decision at each slot, is the same for all PRUs. Formally

YbcB, V1 (b) z 2 (b)u ...... W N(b)

where B(O, 1)N is the set of occupancy state vectors.

The assumption of homogeneity reduces the need for dynamic coordination of

the distributed decision making. In fact, the decision makers can be

preprogramed to respond optimally to each possible information measure.

Harmony is obtained because each member knows what his comrades will

choose and the role that he should play. Coordination is achieved by a set of

deterministic rules which are known to all network members. Note that from a

practical point of view the assumption of homogoneity is, usually, only

practical in a one-hop PRNET. Accordingly, we shall produce schemes to

decompose a multi-hop network into a collection of one-hop systems, in each of

which the decision of access-rights is homogeneized (see section 2.3).

As an example of a homogeneous information measure, consider the case of

perfect information. Here the information measure is a delta distribution

concentrated on the current state of occupancy. An optimal decision rule is any

priority scheme which assigns a full transmission right to a single busy PRU.

We may use a fixed priority assignment, a round robin or any other arbitration.

The main point is that the priority rules are decided apriori; by assumption each

PHU is aware of those rules. Thus, if each PRU has perfect information he can

immediately find out the allocation of transmission rights. There Is no need for

extra communication between PRUs to coordinate the decision dynamically.
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Another case of homogeneous information measure is that of no information

whatsoever. That is V s the uniform distribution over B. In this case a PRU has

no knowledge about his friends. An optimal stationary strategy must be stable.

A simple stability argument shows that for optimality, each PRU must choose to

transmit with a probability equal to I/N (Nztotal system size). Indeed, if a PRU

has no information whatsoever about the behaviour of his fellow PRUs (except

for their total number), then, in choosing his transmission probability it must

account for the worst occupancy vector that his fellow PRUs may choose. This

is a typical case of max-min decision policy In the absence of prior state

information (FERG67]. That is, each PHU should choose his transmission

probability under the assumption that the state occupancy vector is

L4(,1 ...... 1). Under this assumption the optimal choice of transmission

probabilities to maximize throughpvt is Pin I/N. This policy is precisely

uncontrolled Slotted ALOHA. An Interesting 1.,ature of this policy is that

decision process can be described as a game of the weess algorithm against the

communication demand. The Aloha strategy is a max-min strategy for the

access algorithm.

Another ca.e of an interesting homogeneous information is that of having a

complete description of the stationary behavior of the system. That is, each PRU

is made aware of a Markovian description of the state of all other PRUs. In this

case each P1U may compute the equilibrium distribution for each choice of

transmission policy, then choose that transmission policy which maximizes the

stationary performance. The information measure of each PRU is the

equilibrium distribution obtained by choosing an optimal transmission policy.

It is possible to design a quasi-static algorithm (in the sense of [GALL77]) which

51



solves for the optimal stationary transmission policy through an iterative

process. We shall not pursue this subject here, for we wish to develop an

algorithm which adapts to the dynamics of channel demands, and not to the

equilibrium state.

What will happen if the information measures are not homogeneous?

Evidently the complexity of the decision making increases significantly. It is

not enough for a PRU to estimate the actual state of the system. It is also

necessary for each PRU to estimate the strategies of his fellows. This is still

insufficient because other network members will base their decisions upon

their estimates of his strategy. Therefore, he should estimate their estimates.

Clearly such a process of estimation is computationally unrealistic. Usually a

solution will be found where the network members exchange some Information

for coordination and Ignore those parts which make their individual

information measures non homogeneous. In short the problem Is very hard and

for practical solutions it is usually avoided. How should distributed decisions

be arrived at,°when the information is inhomogeneous? The answer to this

problem is open and should be answered within a future theory of decentralized

algorithms, to be developed.

To summarize, the assumption of homogeneous information eliminates the

problem of coordination. If the information is perfect, the problem reduces to

that of ordinary centralized optimization. If no state information is used, the

problem becomes that of choosing a max-min strategy. At one extreme there is

a full cooperation at the other extreme full distrust. The problem of

characterizing the spectrum of information measures between the two
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extremes, is left for a future research. We proceed to examine an important

intermediate case.

Let us assume that the information is symmetric. That is, a PRU does not use for

decision any information about the individual identity of those that are busy.

Formally speaking, the common information measure w, is invariant w.r.t. the

group of coordinate permutations of vectors in B. That is:

-(b i ,bt ..... ,b t )=m(b 1 ,b2 ...... ,bN)

For all bB and for all permutations (iIZ,...iN) of (1,2,...N).

We may identify the distribution v with a distribution over the equivalence

classes of state vectors, w.r.t. equality modulo permutations. Each such

equivalence class is completely described by the number of busy PRUs (i.e., the

number of I's in the state vector). Thus, a symmetric Information Is a

probability measure on the set (0, 1,2...,n,..N), where n stands for: n busy PRUs

in the network.

Finally, the problem that we face is to maximize the expected throughput,

over the class of all decision functions d:(O,Do)x ---- )A where 0 is the set of

probability measures over (0,1 ...... N) and A=[O,1]N is the set of all available

strategies. We shal restrict ourselves to stationary decision functions only (i.e., d is time

* independent explicitly, tough it may depend upon time implicitly through the state).

The best symmetric information that the PRUs may have, is the actual

number of busy PRUs. The subject of the following sections s to develop an

optimal stationary decision scheme which uses this Information only. We
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derive an optimal access scheme under symmetric information, then we

examine the problem of implementation of the basic scheme and its variants.
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2.2.2 AN OPTIMAL ACCESS SCHEME.
Let 0, 1]N designate the set of all randomlsed strategies available to the

network. Here a generic strategy I is a vector whose i-th component qt, is the

probability that PRi will na transmit a packet given that he is busy'. We define

a few functions of the strategy which are of importance.

First let us introduce some notational conventions. An oupancy eonfigrl tion.

of n PRUs is a subset of n indices taken from (1,2 .... N). A given occupancy

configuration may be uniquely identified with a vector of indices

' ..-" ... (i.... ..... ,i.) where ii(i(( ...... (in  Let In describe the set of all such index

vectors. Let 1i describe the set of all occupancy configurations, which do not

include the index L Equipped with these conventions we define the following

functions:

1 n>O

nrn

En is, up to a normalizing factor, the expected fraction of empty slots (or

probability of an empty slot) conditioned on the number of busy PRUs being u.

n~n

nn
is, up to a normalizing factor, the expected fraction of slots during which

PRi may expect no interference, conditioned on the number of possible

interfering PRUs being n.

* Choosing the probabilities of silence as the dcision parameters, rather than the translsftu
probabilities, tI merely to simplify formulae
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In terms of these functions the expected fraction of slots during which a

packet is delivered successfully, conditioned on the number of busy PRUs being

n, is given by:

We call Sn the conitional throughput. It is easy to prove that an optimal strategy,

i.e., a strategy which minimizes the delay, must maximize the conditional

throughput. This follows from the results presented in chapter 7.1 of

[MARS7-].*

Therefore let us look for the strategy q which maximizes the conditional

throughput. First let us derive sor-a simpler expressons for Sn, which separate

the symmetric terms from the non symmetric.

A simple application of the principle of inclusion- exclusion [RIOR58] yields

the following identity:

n' n-I n-2 2 n-3 3 n n-I
(2.2-4) E E -qiEi + qi Ej -qE +.... + (-q) °

n-1
Let us use this expression for E1  in 2.2-3. We get the following

expression for the conditional throughput:

(2.2--5) Sn [I/(n) I "iaN=( I-qi ) -0 ( "qi E

( I

To gain some geometrical Insight into the structure of the function Sn let us

*SVV &100 the comment to that effect In Sec lon 2.2.1 under the description of the objective.
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examine some simple examples of Sn . The function S1 is given by the

expression:

(2.2-6) Sla(IIN) N-j(1-qi)=(I/N)1 N - z N qi

This is a linear function of g so the optimum strategy must be an extreme

point of A. Clearly %=(0,0 .... 0) is the best strategy, yielding a conditional

throughput S 1.

When n-Z, the conditional throughput becomes:

(2.2-7) S2 - [Z/ N(N- 1)][ (1J qi)(N - 1 -JN qj) + :" (q1 )2- j

Consider the case of two PRUs only, i.e., let N=2. The surface

SZ(_)=ql(l-q 2 )q 2 (1-q 1 ) is depicted in Figure 2.2-1. The point ge-(1/2,1/2) is

a stationary point of S2 As a matter of fact, if we consider the line of

symmetric strategies, q I=q2 , then g! is the best symmet ic strategy (for symmetric

strategies, SZ(.)z2q(1-q), having a maximum at qzl/2). However, g is not the

best available strategy. Indeed, g! is a saddle point of S?- . The best strategies are

g I =( 1.0) and 2(O,1), that is, one PRU should get a full right of transmission

while his fellow gets no right whatsoever. If both PRUs are aware of the fact

that both are busy, then they can decide who should transmit through a

preprogrammed priority mechanism. There is no need for a randomized

decision.

Now let N= 3 and n=Z. The cube of strategies is depicted in Figure 2.2-2.

S2 (E) is a symmetric function of q. Let us search first for optimal points of S2

inside the cube. Possible candidates must lie on the main diagonal. Thus we

57



FIgure 2.2-1: Throughput Surface for Two BUSY PRUs



seek to maximize the restriction of S? to the main diagonal, i.e., S2 (g)=3( 1-q)q2 .

It is easy to see that the point g!=(2/3,2/3,2/3) obtains an optimal throughput

among all points on the main diagonal (symmetric policies). This point

corresponds to optimal ALOHA policies; it obtains a throughput

S,=3x( 1/3 )2(/3)2=4/9. ..

Let us try to improve the performance considering policies on the boundary.

Fix qI to be 0. On the resulting face of A the function S2 is symmetric in the

other two policies. A stationary point must lie on the diagonal q2=q 3 -

Therefore we seek to maximize the restriction of S2 to this diagonal,

S2 =(Z/3)q(2-q). Clearly the optimal choice of q is q-1. The corresponding point

a1 =(O, 1,1) obtains a higher throughput than I, i.e.,

S1 = I -P[Both PR1 and PR2 are busy]= 1-(1/3)=2/3 while S,=4/9. Now consider

S?2 restricted to the face (edge) ql=ql=O. On this face S2 (g)=(2/3)q is a linear

function obtaining its maximum value at the corner gM(0,0,1), the maximum

being S2 =2/3 again. We may continue the search over the other faces. For

instance when ql=1 the optimal point is the corner (1,0,0) and so on. We

conclude that in the case N=3 n=2, optimal policies are pure policies, that is any

of the following corners of the cube: (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1)

and (1, 1,0). An optimal policy consists of letting one member (two members)

have a full transmission right and the other two (one) none.

To summarize our findings, the symmetric strategies do not necessarily

provide the maximal throughput. The maximum throughput may be obtained

by an asymmetric policy, i.e one which assigns full transmission rights to a subset

of the PRUs and no right to all the others. We shall now generalize them
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observations to Sn .

We wish to find a strategy q which maximizes the throughput function Sn .

Unfortunately the throughput Sn is not a "nice" function; that is, it is not

concave or convex in !- Later we shall show how to reduce the problem to a

convex maximization. In the meantime we first search the optimal strategy in

the relative interior of all the faces of the hypercube of strategies A. The search

will contribute to our understanding of the solution.

The complexity of the search may be reduced significantly if we utilize the

symmetry of 5n. Indeed, if we restrict some (possibly none) individual

strategies q1 to be pure, i.e., 0 or 1, Sn becomes a symmetric function of the

remaining coordinates. A stationary point of the restricted Sn Is necessarily

symmetric in all the remaining coordinates. Therefore we only have to

examine strategies which are partially pure and partially symmetric.

Geometrically speaking, we should only examine the local maxima of the

restriction of Sn to the main diagonals of the faces of the cube A.

In what follows we shall consider strategies which are partially symmetric

and partially asymmetric. We first optimize the strategy of the symmetric

users. Then we search for the optimal number of asymmetric users. The search

will finally lead us to a pure strategy (i.e., a strategy where some PRUs need to

keep silent while others are given full access rights). The optimal strategy is an

e-xtreme (corner) point of the hypercube of strategies A, i.e., a pure strategy.

Let us consider symmetric strategies on a face of A determined by a choice of

k PRUs to transmit, say q=(O,0,O...O,q,q,..q). Let m be the number of symmetric
•



* PIRUs, k+mwN. We shall use the notation 511g to denote the conditiona

* throughput obtained by the restricted strategy. We shall first compute the

function S! the maximize it.

First note that

k +m(l-q) if JUO

Also

E r

Er') q for r:m

Thus, the restricted throughput may be computed from equation 2.2-5 to

* give:

*(2.2- 10) 3Sngq) E n [k +m(1-q)].X'i (-i)JEI-JlM(I-q)j.
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Using the Identity:

n-n- .7

we gett

n n- I[(N..n+1) -q(m.n+ 1)J(2-2-12) Sii(g.)= qn ' [ N n l ' ~ ' ~ )

(N)

For instance, when k=O (m=N) equation 2.2-12 reduces to the well known

formA

n

(2.2-13) S(9)*- qn'l(N-n1)(1-q) nqll- (Iq)

(N)
Differentiation of the function S(g) w.r.t. q yields the following value of

the unique stationary point q:e

(2.2-14) q&(-- I N-n +1)

The respective throughput Is given by:.
m )"~~n I I 1( -+ - )n'-

(2.2- 1 ) n(qg) ) (I ( -i-

For a later reference we shall also need the following form:
k- n -nL

(.1 _-) ) n-

For example, when kzO (maN) the optimal symmetric strategy q0 is 1-1/n,

i.e., everybody gets the right to transmit with probability 1/n. The optimal

value of the throughput obtained by symmetric strategies Is (1-11 /n)n . Both

values conform to well known formulae for optimal Slotted ALOHA [ABA73].
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Let us examine the value of the optimum throughput as k increases from 0

towards N-n, iLe., m decreass from N towards n. For this purpose we exazMne

the ration

(2.2-17) fm -- j I
n

We wish to prove that SL (ge) Is a monotone, nonincreasing function of m. It is

*enough to show that the ratio in equation 2.2- 17 Is smaller than 1. To show

this we note that

f2 m(m-2)/(m- 1) 2 ( 1

Also, the derivative dfn may be easily shown to be negative. Therefore, the
m

ratio 2.2- 17 is a decreasing function of n and becomes smaller than 1 for Zn>1I

Thatis fll<m. Thus the stationary throughputs SL (je) keep on increasing

as m decreases (k Increases).

Since the decreas In the number m, of users which are given symmetric

rights over the channel, Increases the throughput, the question arises how

small can m become ?

The answer Is obtained once we consider the expression 2.2-14 for the

* optimal value of q. Indeed since 40 can not exceed 1, the following Inequality

* follows:

(2.2-18) m k (n- 1)(N.1)In

from which we get:
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(2.2-19) k £ N-m S (N-n+)/n (LN/nJ + Is

Therefore the optimal choice of k is the mazimal integer which is not greater

than (N-n+*)n. Let us, for the time bein& ignore the requirement that k be an

integer and assume that equality holds in the leftmost inequality of 2.2-19 (i.e.,

kopt (N-nel)In) then

1. q0= I. That is. the symmetric users are all silent. Therefore the

optimal strategy is an extreme point of the hypercube A.

2. The optimal throughput, as given by 2.2-16, assumes the form:

kN_

(N).

which is a tern of the Hypergeometric distribution, describing the

probability of getting one black ball from an urn ontain ng n

black balls and N-n white balls, once we draw k balls. This,

seemingly unrelated, interpretation will soon be shown to provide

a good model for our problem.

To conclude the discussion, the optimal strategy among all strategies in

which some PRUs receive full transmission rights and the remaining PRUs get a

symmetric right, is to give full transmission rights to kopt A (N-n+l)/ns PRUs

and no right whatsoever to the remaining PRUs.

*he notauan LJ sias for the gr Integer which is not greeter than x.

'This number to Mally ne-integer end therefore the iMit UMA to be ft!he1 aIbr*W. This
problem will be addeed soon.
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In order to be able to claim that the above rule is the beast network strategy,

we should repeat the tedious process of computing the conditional throughput

for strategies of type (1,1,1..., lqq,...,q). We have to find the best value of q.

Then, we have to find the best number of silent PRUs. The process Is a simple

repetition of the computation above and the results are the same (ie., the

optimal value of q is 0 and the optimal number of users for which qVO should be

kz(N-n+ 1)/n). A shorter proof will be presented soon.

The asymmetric (pure) strategy lends itself to an easy interpretation n terms

of an urn model. The PRNET may be thought of as a collection of intelligent

balls, which are colored black (for busy) or white (for Idle). Each ball may

choose to jump out of the urn or stay inside with some individual probability.

"Jumping out" of the urn corresponds to acquisition of a transmission right. The

objective is to have one and only one black ball among those who choose to

jump out. If the only information available is the number of black balls then

the best strategy is to assign a probability I of Jumping (I.e., quO) for some balls

anti probability 0 to the rest.

Let N be the total number of balls, n is the number of black balls, k the

number of balls to be drawn. We would like to choose an optimal value for k.

The probability of drawing exactly one black ball is given by the value of the

Hypergeometric distribution:
n')( N-n)

(2.-20) Rl1kn.N) A
(N)

To find the optimal value of k, let us consider the following ratios

I (2.2-21) gk & H(l,kn,N) / H(1,k+l,nN) * k(n-k) / (k+1)(N-n-k+1)
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. It is easy to check that gk ( I as long as k((N-n1)/n and Sk>1 when the

Inequality Is reversed. Therefore, ku(N-n+1)/n would have been the optimal

choice of k had we permitted (possibly) non-integral values of k. This result is

identical to our previous formula derived through the search method.

We now turn to the problem of non-integrality of ku(N-n+ 1)/n. Since k can

only assume Integral values, the Inequality 2.2-19 Implies l(N-nl)/nJ. Also,

the remaining mzN-k users should assume access rights with probability

I -q°  I/n(N-n-k.1) (here q0 is given by the expression of 2.2-14). This last

probability Is very close to zero; it can be considered as a form of compensation

for the Integrality of k. That is, since we are constrained to select an integral k

the actual optimal policy is a perturbation of a pure policy where PAUs that

should have been silent are given a transmission right with a probability very

close to 0. We shall, for practical purposes, ignore the compensation terms and

use a pure policy. Since LNInJ-+(Ilnl )(N-n.1)InsLN/nJ+(I/n), a natural

choice for an approximately optimal k is ktN/nJ or k=N/nJ-1. Another

possibility is to randomize between these two values of k. Henceforth we shall

adopt the value k.LN/nJ. We call a pure policy which allocates transmission

rights to kzLN/nJ PRUs and no rights to the remaining PRUs an Urn scheme.

The probability of success (i.e., conditional throughput) for the Urn scheme

is

N/nJ- l

(Z.Z-22) Sonpt z."

)N/n )

Figure 2.2-3 depicts the dependence of the optimum conditiona throughput,
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upon the number of busy PRU for a system of Nw1O PRUs. The dashed curve

describes the respective throughput of optimally controlled Slotted ALOHA i.e.,

symmetric policy. The diagonal line describes the respective performance of

TDMA. The relations between the curves are not sensitve to system size and

look the same for Na 100.

When the network is lightly loaded, the optimal Urn policy performs

comparably to optimally controlled ALOHA. When the network is heavily

loaded the optimal strategy converges to TDMA (whose capacity approaches 1 as

the load increases). In the range of medium traffic, it performs better than both

schemes. Finally the mechanism that the Urn scheme employs does not impose

limitations upon the useful capacity of the channel. True, collisions and wasted

slots are still permitted (this is the price of imperfect information, i.e.,

homogeneous, symmetric and memoryless), however as the load increases, so

does the value of our partial information; therefore the waste of the channel

will decrease.

The urn model provides a simpler proof that the optimal strategy is pure.

Indeed, let us condition the throughput Sn on the number k of balls which

choose to jump out. Sn becomes a convex combination of Hypergeometric terms

H( lk,n,N); that is, Snul.P[k balls jumped]xH(1,k,n,N) where the summation

is on Ok.MN. If we maximize this convex combination over the N+I simplex of

all possible distributions of k, we have a standard convex optimization problem.

The maximal throughput is obtained at those extreme points of this simplex

which select kAN/nJ (or IN/nJ - 1) balls.

The optimal choice of k has another surprising property. Let us compute the
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expected number of black balls in a sample of k balls from an urn having a total

of N balls n of which are black. We shall denote this expected number G(kn,N)

(G denotes the expected channel traffic, similarly to [ABRA73]). The

probability that J out of the k balls sampled, happen to be black is given by the

Hypergeometric distribution H(J,k,n,N). Therefore

(2.2-23) G(kn,N)2j-o J x H(J,k,n,N)

Let us use the following combinatorial identity ([RIOR68], equation 11,

section 1.4):

*(2.2-24) p q)() IjO (-j +r ) (

Using this last identity with m4N- 1, p4n- i, qA I and r-k, we derive

(.-Z)(N- 1)I k N-).)..-.
(2.2-25) n-1 =O J~ ( 4' (j

This identity can be devided by ( n) to give

(2.2-26) 0 J x H(J,k,n.N) z (kxn)/N

For the optimal choice of k this last expression is approximately 1, a result which is

similar to Abramsons G-i optimallty condition [ABRA73] (also [KLEI77]).

Now let us examine the asymptotic behavior of the Urn scheme when the size

of the users population N grows to infinity. Let us assume that the ratio

z[d] A n/N remains fixed, i.e., the probability of being busy remains fixed. As N

grows to infinity, 8 kept constant, the Hypergeometric distribution 2.2-20 may

be approximated by a binomial distribution (FELL63].

(2.2-27) 1 H(,k,n,N) ka(I )k 1
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The optimal Urn policy is to draw k I I/A balls. The throughput of this

policy is approximated by:

(2.2-28) (OD

As N grows to infinity the throughput of the Urn scheme is asymptotic to the

expression 2.2-28. For small £the throughput becomes Il,. similarly to controlled

ALOHA. When the load 6approachaes 1, the throughput also approaches 1. Therefore for

an infinite Population the Urn scheme Performs as ALOHA for a small load; however it is

not limited in capacity and can provide the full capacity when the load is heavy. Figure

S2.2-4 depicts the behavior of the throughput S as a function of the load 6,for

* ~. the Jnfinite-populatiofl model of the Urn scheme.

1.0

0.81

0

0.2-
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4 3
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Figure 2.2-4: Throughput vs. load for an infinite population Urn scheme
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In what follows, we examine the problem of impeetn the optimal

strategy. We analyze and compare the performance of the Urn scheme and its

variants with that of other schemes.
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2.2.3 IMPLEMENTATION

To implement the Urn scheme, two fundamental problems must be resolved

1. The problem of state information acquisition. .. 4

2. The problem of coordinating the distributed decision.

When we leave the domain of theoretical models to the domain of practical

algorithms it Is required that we develop practical approximations to the ideal

structure of the model. This is the major objective of the foflowing section.

2.2.3.1 Acquisition of Information

Information about the state of the PRNET may be obtained by monitoring the

state of the channel, and/or incorporating exchange of information between

PRUs.

The information which may be acquired through channel monitoring is

subject to the specific hearing topology. If the hearing graph is completely

connected, I.e., each network member hears all his comrades, then channel

monitoring may provide sufficient control information. However, if the :.-

assumption that all PRUs are within hearing range is false, then monitoring the

channel may be insufficient.

Channel monitoring is the only way to acquire free state information. To

gain any further information one has to introduce a mechanism for exchange of

status and control information. Any such exchange scheme must use a control

subchannel. It is possible to implement the control subchannel n the form of

mini time slots of the channel, or a mini slice of the total bandwidth (or some

combination of both). Whichever way we choose, a price must be paid for
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control in terms of a portion of the communication resource lost for overhead. A

Moreover the control channel is, again, a multi-access broadcast channel which

*is to be shared by the PRUs. We face a recursive problem of designing an access

scheme to the control subchannel.

-In addition to the above problems, the control channel poses another problem

of major importance, the problem of reliability. Many access algorithms are A

.- very sensitive to errors in the information used for decision. If the information

is not available in time and /or contains errors, the algorithm may not function

at all. This problem has hardly been considered for lack of quantitative theory

of reliability of algorithms.

IHow much overhead does the exchange of information require? We have no

clean way of answering this question. That is, the anmunt of overhead is a

function of too many parameters. Therefore we use simple crude estimates. If

the control subchannel is to be error free (i.e., have a negligible rate of errors)

then it requires not only forward error correction (coding and decoding)

overhead, but also some elimination of collisions.

If the control subchannel is to be collision free, then the size of the channel

grows asymptotically like N, when perfect information is required (N Is the " "

total size of the system); or like logN when the information required Is

symmetric, i.e., total number of busy PRUs. (the author is, however, unaware

of a scheme to achieve the later number). Moreover, the different PRUs are

required to be synchronized to identify their mini share of the mini control

channel. The synchronization overhead plus the coding decoding overhead plus

the size of N, may result in a maxi control channel and a mini data channel.
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The conclusions of the above discussion are two:

- Access schemes should be insensitive to errors in the information

required by the decision algorithm. The information exchange

mechanism may be trusted to a very limited extent.

-Exchange of control information should be restricted to a small

subchannel.

The design of adaptive access mechanisms poses an intrinsic difficulty; on

one hand adaptivity requires information; on the other hand the algorithm

should be able to function under degraded information. A compromise should be

found. Fast adaptivity may require too much information to be feasible. Very

slow adaptivity may not be efficient. Deterministic schemes (i.e., slowest

adaptivity of all) are very reliable but may be highly Inefficient. Controlled

Aloha provides a limited adaptivity and maintains the high reliability.

Reservation schemes and learning schemes may provide an excellent adaptivity

at the price of low reliability and/or enormous control overhead. Let us proceed

to develop some possible practical solutions to the problem.

One form of a control subchannel is the acknowledgement traffic. In chapter

five we develop a general control principle and a general control mechanism

which employs the acknowledgement traffic only. It is also possible to use the

acknowledgement traffic to estimate the total number of busy PRUs. The

solution of this problem requires that we filter a jump process. The solution

has been derived, in conjunction with the problem of controlling the ALOHA

scheme, by A. Segall [SEGA76]. The derivation is general enough to apply with

minor modifications to the Urn scheme. However, the acknowledgement traffic
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may not be a satisfactory information collection mechanism. The information

about the state of the system, gathered from the observation of the channel

state, does not allow accurate tracking of the state of the system. Only slowly

varying statistics of the state may be infered with some accuracy. Adapting to

such slow changes may be insufficiently slow and inaccurate for an access --

scheme. Therefore we shall not pursue the subject further.

Rather, we shall describe a simple information exchange scheme, which

offers an accurate estimate for the number of busy PRUs. For the purpose of

simplicity we shall restrict ourselves to a one hop system. The problem of a

multi-hop network will be considered in a later section.

The Urn scheme requires a multi-access binary erasure channel, which is

shared by all PRUs. In order that each PHU may keep track of the number of

busy PRUs, it need only be aware of changes in the number of busies. That is a

PHU needs to use the control channel only to announce that he became busy or

idle. Let us assume that a PRU going idle augments a piggy-back announcement

to his last packet. Thus, we shall only be interested n the problem of

announcements when an idle PRU turns busy. A newly busy PRU uses the

control subchannel to send a standard message (a few bits long). There are three

possible announcements that may be received through the control channel: 7W

nerv busies (0); one PRU became busy (1); two or more became busy (in this case the

anouncements collide over the reservation channel and an "erasure" is detected).

That is, we use a .ymmetric reservation channel with collisions.

The information provided by ahnouncements is insufficient to determine the

number of busy PRUs precisely. However, as we shall show now, the

76



announcements over this erasure channel provide an excellent estimate of the

number of busy PRUs.

Let us assume that the total rate of arrivals to the system is r. That is

r g expected number of arriving packets per slot; for stability we require OSrS 1.

Clearly the worst system, as far as acquisition of symmetric information goes, is

one where each arrival turns an Idle PRU into a busy one. We shall assume that

all N PRUs are idle and the arrivals to each PRU form a Bernoulli process with

rate r/N. As N grows to infinity (again the worst case) the overall arrival

process is Poisson distributed with rate r.

The probability of two or more arrivals during the same slot, is given by:

(2.2-29) P["erasure"] = 1 - er - re-r 0.26

The probability that three or more packets arrived, given that at least two

arrived is:

(2.2-30) P[ Over 2 arrivals I "erasure"] = 1 - r2/2(e-r - l-r) - 0.3

In Figure 2.2-5 below, we describe this conditional probability (i.e., 2.2-30)

as a function of r.

The conditional expected number of arrivals, given "erasure", is given by:

(2.2-31) =qkkrk/k!] x [e-r(l -e-r-re-r)] r[ I + r/(er - 1 -r)] < 0.24

This expected number of arrivals is depicted in Figure 2.2-6 below.
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control channel. Indeed, all we have to do Is keep an underestimate of the total

number of "busies". This is obtained if we decide to Interpret erasure as an

arrival of two. Erasures are rare (according to equation 2.2-29). The

probability that an erasure is underestimated, i.e., more than two PRUs became

busy while the estimate s two, is small as shown by equation 2.2-30. An

underestimate will occur in the worst case at about seven out of hundred slots.

The probability of error is very small even for an arrival rate close to 1. If we

choose to have a consistent underestimate, we may correct our estimate every

time that our lower estimate shows that only one PRU is busy. In this case k:N

and all busy PRUs will transmit and collide. They may use the collision as an

indication that there is more than one busy PRU and update their counters to 2.

Still another strategy may measure r and use the conditional expected

number of arrivals given by equation Z.--31 as the data for update. Again, we

may correct our estimates every time the system becomes idle.

It is generally better to keep an over-estimate of n rather than an

underestimate. The reason is that we may keep the number of transmission

rights k too high and enter a state of blocking when the system is heavily

,- loaded. However, it is possible to switch between under-estimates and

over-estimates as the traffic load grows. Indeed, there is a wide room for many

possible estimation strategies.

Another design parameter of interest is the rate of updates. It is not necessary

to update the occupancy counter every single slot. One may choose to update

new arrivals once in a few slots. Updating the number of newly turned busy

every frame of few slots, requires that we should estimate the number of busies
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from both the update information and the expected rate of arrivals.

Finally, we see that a few schemes are available for estimating the number of

busies. We use an announcement channel like previous schemes

[SCHO77, ROBE73]; however, our control subchannel is very small in

comparison with the data channel. We use a fixed amount of channel for

announcements, independent of the number of PRUs. We permit collisions over

the control channel and do not require coordinated announcements. All these

properties make our announcement scheme different and more desirable than

previous reservation type schemes.

2.2.3.2 Coordinated Decisions

In the previous sections we saw that the assumption of homogeneous

information implies that there is no need for extra coordination. In reality,

however, this is only an approximation and it is required to design the access

scheme so that it becomes insensitive to perturbations of the conditions under

which it was developed. The specific details of the implementation depend

upon the particular environment to be considered. However, all

implementations of the Urn scheme have to resolve two problems:

1. How many PRUs should be given transmission rights during a

given slot.

2. How should the network members agree upon the identity of those . -

to be given transmission rights.

The first problem can be resolved in at least two ways. First we have the

solution kziN/nJ developed in the previous article and the few methods for

s0
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estimating n. Second, we shall develop in chapter five a more general method to

decide on k, which does not require any estimate of n.

The second problem may be resolved through some preprogrammed priority

mechanism. One possibility is to use a lottery mechanism to generate a fair

randomized priority mechanism. To implement random priority mechanism, we

equip each PRU with a pseudo random number generator from which he may

draw numbers uniformly distributed between 1 and N. The coordination of the

decisions of the different PRUs is obtained by using the same seed for the

random generator.

At the begining of each slot, each PHU uses the estimate of n, the number of

busies, to compute the number kztN/nJ of "balls" to be drawn from the urn. He

draws k numbers from his random generator. If one of the k numbers turns out

to be his own number, the PRU knows that he has a right to transmit a packet.

A PRU which is lucky and has a packet to transmit should transmit. There

should be an acknowledgement mechanism to detect collisions so that

unsuccessful packets will be retransmitted.

There are numerous possible variations of the basic scheme:

- It is possible to update the size of the window k every few slots

rather then every single slot.

- It is possible to draw a random permutation of (1,...N) and let the

next k transmit at each slot until we reach the last PRU. This

scheme will permit every PRU a transmission right per cycle. As

we shall see, the performance Is improved just like the

- . . -. . . ., . .. . . . . - .8 1



improvement of round-robin TDMA over random TDMA.

- It is possible to use a window of adaptive size, which rotates in a

round robin fashion through the network members, giving them

access rights.

Finally, we may use the acknowledgements to acquire an asymmetric

information and improve the performance of the Urn scheme. To see how such

an improvement may be obtained let us reconsider the urn model.

Let us assume that we Just drew k balls out of the urn. If an

acknowledgement is instantaneously available then we have in our possession

an asymmetric information about the state of the k balls in our hand. There are

three possible events that we may detect:

1. A succesi: One black ball and k-I white balls.

2. Collijion At least two black balls.

3. Empty: All k balls are white.

In the first and the third cases we have increased the information available

for us significantly. Our basic scheme does not utilize this information; all k

balls are returned to the original urn, there is no learning. An immediate

improvement is, in the first case, to let the lucky PRU use the following slots

until it empties; in the third case, the obvious improvement is to put the k

white balls into a new urn and draw a window of k"L(N-k)/nJ from the old

urn.

In the second case, we have to decide between drawing from the old urn or

-S.
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from the k balls in our hand. Again, we introduce a new urn and put the k balls

inside. There are two decisions now; from which urn to draw and how many.

In the general case we may keep a number of urns. At each slot we have to

make three decisions:

1. From which urn to draw.

2. How many balls to draw.

3. To which urn should we return the balls.

The number of urns represents the memory span of our decision scheme. The

more urns we use the less Is the value of our symmetric Information compared

to the acknowledgements. If the number of urns is small we may add a scheme

of announcements to acquire symmetric information about each urn. When the

number of urns grows to N, we get a perfect informaton scheme. What is the

best number of urns? How to use the urns and the acknowledgements

optimally? We do not know.

To summarize, one may use the asymmetric Information, generated by the

acknowledgements, to improve the performance of the Urn scheme. We can

point out few ad-hoc schemes of improvements, but we do not know the

optimal solution.

Finally, with a multiaccess erasure reservation channel and a randomized

priority mechanism to determine which k=LN/nJ PRUs have a right over a given

slot, the Urn scheme is very robust. It meets the two qualifications of the

previous subsection (page 75). Indeed, the number k is relatively insensitive to
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small errors in the observation process. Moreover, the Urn scheme permits

errors in both estimation and coordination, for it permits collisions and can

easily be designed to avoid situations where collisions consume the full

capacity. All these properties make the scheme a good practical solution to the

problem of adaptive access schemes.
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2.2.4 PERFORMANCE- ANALYSIS

In this section we analyze the performance of four access schemes in similar

environments. We compare the delay-throughput and input-throughput

performance of the Urn scheme, Optimally Controlled Slotted ALOHA, TDMA and

Perfect Scheduling (the ideal performance bound). Access schemes are, as far as

queueing theory is concerned, service mechanisms. To analyze the performance

of the the four schemes, we must describe the structure of the queueing

mechanism completely. That is, we describe the buffering mechanism and the

arrival process.

Henceforth we shall assume that each PRU possesses a buffer which may

contain one packet only. This assumption is necessary if we wish to use a

Markovian model for the total number of queued packets. That is, the

assumption of single-message buffer makes the occupancy configuration Bt (see

page 46) a Markov chain.* The assumption of one-packet buffer enables

analysis but it also introduces a blocking phenomenon. Therefore we analyze

both the expected delay and the blocking probability.

Another simplifying assumption is made to render the queueing process

memoryless. Namely, we consider service mechanisms which are time

independent. Our model for Slotted ALOHA assumes that access rights are

allocated by coin tossing with time independent probabilities. Our model for

Perfect Scheduling assumes that access rights are given to a single busy PRU.

selected randomly (Using conservation laws, [KLEI76] it is possible to argue

that any perfect scheduling scheme generates the same expected delay,

The case of multU-message buffer does not lend Itself to a simple ananiysit since a Markovian.
State description must include the total number of packets In each queue. --*
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regardless of the priority scheme which is used to allocate access rights). Our

model for the Urn scheme assumes that the selection of k=N/nJ PRUs for

transmission rights, is random and time independent. Similarly we consider

random TDMA, i.e., only one PRU is given access right at each slot; the selection

is random and time independent. In the last two cases a time dependent (say,

round robin) allocation of transmission rights is more efficient, as we shall see

in the next section.

We consider two models for arrivals. One model assumes that arrivals are

independent Bernoulli processes, i.e. "nature" tosses a coin for each PRU and

generates at most a single arrival per slot to that PRU according to the result of

the toss. The Bernoulli model is sensitive to the blocking effects. Many packets

are blocked even when the system is not fully busy. To reduce the effects of

blocking we shall consider a second model. The arrivals are generated from one

Poisson process of rate r. New arrivals are distributed among vacant PRUs only.

The only blocking effect appears when all PRUs are busy and the whole system

can not receive new arrivals. In the case of Bernoulli processes, blocking may

occur at each PHU even when his fellows are empty. In the case of a Poisson

process, blocking occurs only when there is no room for a new packet in the

whole system.

Let N be the overall number of PRUs and n be the number busy PRUs. The

probability of i PRUs getting a packet during the nexi slot is given by:

(rlI i!) er i N-n

1 -- .cO (rJI!) e"r iN-n

86

*°""" * 2" ."" " -. * " .* " * " 1



for a Poison arrival process, and

(3.-33) a&(N t

for a Bernoulli- arrival process.

With these models In mind, the number nt of busy PRUs at the beglniung of

slot t, becomes a homogeneous Markov chain. The structure of the transitions

or nt is described In Figure 2.2-7.

0
* 0 anN

Figure 2.2-7: Transition diagram for the number of busy PRUs

* -The transition matrix Is a lower Hessnberg matrix [WILK]. sh saY stt

distribution of the number of busy PR~s is given by the solution ofs
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(2.2-34) [vex," J -OWi.'N] . ........... Sk

0 ez-1 .......... Uk
0 0.

Where00 ***.* 1 4

(22-35) -n murobaili ~ busy PR~US * "-tow PE'6

and

UP2-6 epS(n) 4aj- 1 + -S(n)] SP

Here S(n) Is the throughput conditioned on a occupied PRU. Clearly S(0)80

independently of the -cmg scheme. When an>0. 5(n) changes2 from COOe Schema

to another. In the cm of a daemon controlled network (ILe perfCtsceui)

Optimally controlled ALOHA provides:

Random TDMA obtains:

-STDMAA (n) * nN

Our Random Urn scheme attains:

SPSUM(a) I
The steady stat equations 2.2-34 lend themselves to aR eas reCurive



solution. We can solve and compare the performance of the four different.1.-

schemes: optimal ALOHA, TDMA, our Urn scheme and a damnonic scheme of *.

perfect channel allocation.

The solutions for the four different schemes are displayed In the following

graphs. Figure 2.2-8 depicts the delay-throughput performance of the Urn ..

scheme for Poisson and Bernoulli Input rates. The two curves are not radically

different. The Bernoulli arrivals curve shows smaller delay for input rates

smaller than -0.6 and larger delay as the input rate Increases. This may be

easily explained; for low input rates the individual blocking of Bernoulli

arrivals reduces the actual input and thus packets which are accepted are served

faster. When the load increases the Bernoulli process suffers the same delay but

delivers less throughput than the Poisson model. These differences are not

critical. Therefore we shall describe the performance of the Poisson model

vis-a-vis the four schemes, ignoring the Bernoulli model.

Figure Z4-9 depicts the delay-throughput performance of the four schemes

for 10 PRUs. There is no dramatic change in the relations between the curves as =

the size of the system grows. Figure 2.2-10 shows the same set of curves when

the number of PRUs is 100. The Urn scheme performs comparably to optimally

controlled ALOHA when the traffic is very light; it smoothly converges to the

performance of TDMA when the traffic grows heavy; in the medium traffic 2
range it is better than both schemes. The distance between the lowest bound

and the Urn scheme is the price that we have to pay for not having a daemon to

allocate access rights perfectly. Figure 2.2-11 depicts the relation between

offered input rate and the throughput. Recall that the only blocking effects

2-A
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Figure 2.2-8: D.Iay-Througfiput, Poisson vs. Bernoulli arrivas
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- appear when the full system is bux7. The Urn scheme does not Imit the useful

capacity while optimally controlled ALOHA cannot obtain a throughput beyond

- a certain threshold which approaches 1/e, as the system size grows, Very

rapidly.j
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Figure 2.2-9: Delay Throughput performance for N -10 PRUs
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Fgure 2.2-10: Delay-Throughput performance for N-100 PRUs
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.2.5 SIMULATION RESULTS

We simulated the different access mechni-ms under similar buffering

conditions and arrival process. We considered the following schemes:

1. Perfect scheduling

At each slot a single busy PRU is selected randomly and serviced

successfully.

•. Optimal slotted ALOHA

At each slot, each busy PRU may transmit with probability 1/n,

where n is the total number of busy PRUs.

3. TDMA

At each slot a single PRU is given access rights; if the lucky PRU

has a packet ready, it transmits. The selection of the lucky PRU

may be random (random TDMA) or pursue a round-robin

scheduling (round-robin TDMA).

4. Random Urn scheme

At each slot k=LN/nJ PRUs are randomly selected for transmistsion

(N is the total system size).

5. Round-robin Urn scheme

At each slot kzLN/nJ PRUs are selected for transmission. The

selection Is from a random permutation of the numbers (1 .... N)
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until the permutation is exhausted and then a new permutation is

drawn and the process is repeated. Thus, each PRU is guaranteed

access rights once in N slots.

6. Window scheme

Here we incorporate learning from acknowledgments into the Urn

scheme. At each slot we let a rotating window point to owners of

access rights. The size of the window is origlnaUy kzLN/nJ. If a

"collision" occurs the window is stopped and its size Is divided by

2 (i.e.. the upper half of the older window is removed). If a

"success" or "empty" is recorded, the window is rotated to the end

of the previous window and it's size is reset according to the new

value of n (i.e., k=.N/nJ). One can use other variations of the

Window scheme. incorporating more sophistication into the

movement of the window.

Figure 2.2-12 depicts the delay-throughput performance of the first four

schemes, for a system with N-10 PRUs each possessing a buffer for z5 packets.

Figure 2.2- 13 depicts the respective input-throughput performance.

Figure Z.2-14 and 2.2-15 compare the results of analysis to measurements

from simulation. We consider the Random Urn scheme for a system with N=O

PRUs. The simulation results show a striking match to those obtained from

analysis.

In figures 2.2-16 and 2.2-17 we compare the performance of the Random

Urn scheme, the Round Robin Urn scheme and the Window scheme. The Round
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Figure 2.2-12: Delay-Throughput performance for N-10 buffered PRUs
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Robin Urn scheme scheme shows an improvement over the Random Urn scheme

when the traffic is in the medium range. The Window scheme provides an

additional improvement which could only justify the Increased complexity

when the traffic is heavy.

Finally, figure 2.2-18 illustrates the power of our multipleaccess erasure

reservation channel. The two curves represent an a-typical deviation of the

estimated number of busy PRUs from the actual number of busy PRUs (using

underestimates). To produce even this slight deviation, we had to condition the

system to a very heavy traffic (input rate 0.8 packets per slot) and sample an

unusually lengthy busy period. Typical curves hardly show any deviation.

.. %
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42.3 FROM ONE HOP TO MULTI-HOP NETWORKS

23.1 SOME OBSERVATIONS ABOUT MULTI HOP NETWORKS

The problem of a multi-hop PRNET organization is very difficult, as has

already been noted in the first section. Resolving the conflict between

simultaneous demands for communication leads to hard combinatorial problems.

Reservation schemes, polling schemes, or any other class of completely

centralized adaptive schemes are impractical, due to the complexity of the

scheduling problem. On the other hand, pre-determined allocation schemes

which do not adapt to the variable communication demands, are highly

inefficient. Again we would like to have an adaptive scheme, which can be

implemented as a decentralized decision mechanism with a small overhead.

In what follows we consider only tree-like networks, that is networks

where all traffic is directed towards a central station (note: only the routing

graph Is a tree, not the hearing graph). Figure 2.3-1 depicts a typical such

network. Tree-like networks possess a natural layer structure. The first layer

consists of all the PRUs that are heard by the station; the second layer consists of

all the PRUs which are heard by the first layer but not by the station, and so on.

Let us observe some properties of multi-hop tree networks:

1. In a multi-hop PRNET the channel is distributed among the

different PRUs; each PRU possessing a local copy of the channel.

Therfore a new dimension, i.e., space, is added to the two

dimensions of the single-hop channel (i.e., time and bandwidth).

Since each PRU shares the "local" channel at each one of his
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Figure 2.3-1: Layered structure of a tree-like PRNET
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hearing neighbors, the problem of resolving conflict of use

becomes a problem of a simultaneous conflict resolution at each

one of his hearing neighbors.

Z. The passage of a packet through a PRU requires at least three slots

of it's channel. The first slot for arrival, the second slot for

transmission and the third slot when the packet is heard again,

once it is relayed farther (i.e., the "echo"). Thus, at most one third

of the channel may be used at each PRU (with the exception of the

first hop and the station).

3. A multi-hop PRNET is channel bound and not buffer bound; the

congestion of the channel dominates the scene. This is an

important experimental (simulation) and analytical result of F.

Tobagi [TOBAGI77]. The number of buffers with which we equip

PRUs does not Influence the expected delay of packets In any

significant manner. On the other hand, a small change In the

hearing topology, the organization of the channel etc... may

influence the expected delay significantly.

4. Bursty, multi-hop traffic is better served by a cut-through'

mechanism than by a store and forward mechanism [KERM77].

These observations will serve as a basis for the considerations of multi-hop

network organization to follow.

"-Cut-through- denotes a mechanism where an arriving mewag will be immediately
repeated If possible, and If not, It Is stored and forwarded later.
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2.3.2 DECOMPOSITION OF TREE-LIKE NETWORKS

Let us consider the problem of conflict resolution from the point of view of

an individual network member. When he decides to talk, he may have a

conflict of use with other members which try to use the channels occupied by

him (i.e., local channels at all his hearing neighbors). Thus, our designated PRU

has to coordinate his decision with all network members with which he may

interfere. Similarly, he has to coordinate his decision with all the network

members which interfere with him. Our PRU faces a formidable problem of

organization.

The layer structure of tree-like networks renders the problem slightly

easier. !ndeed, a PRU in the n-th layer can only interfere with PRUs in his layer

and the two successive layers (i.e., n+l-th and n+2-th layers). Therefore,

* conflict resolution is localized to a smaller environment. Nevertheless, the

problem of coordinating decentralized decisions even in these smaller

environments, is still very difficult.

It seems that an implementable, adaptive algorithm is impossible, due to the

size of the environment to which each PRU needs to adapt. This is clearly a

* "curse" of the combinatorics of interference. In this section we examine the

possibility of decomposition, as a solution to the combinatorial complexity of

coordination.

Decomposition is a handy approach to large-scale system organization. We

shall describe a few methods through which our problem may be decomposed 1
into simpler problems. The tree-like organization of the network already

obtained a substantial decomposition of the interference graph. Further
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decomposition is obtained if we decide to ignore "backward" interference. That

is, a PRU has only to resolve conflict of use with members of his layer, but not

with members of successive layers. Such choice of policy we call "rude".

The idea is simple: a PRU should give up his access right only to avoid the

danger of "blocking". PRUs in higher layers do not endanger our designated PRU

for they can not block his transmissions. A "polite" choice of policy (i.e., to give

up access right in favor of PRUs from higher layers) is reasonable iff a

cross-layer coordination of access rights can be achieved. In the absence of

precise information and coordination, politeness makes sense only In an average

manner to be discussed in chapter five. To sum up, rudeness represents a choice

of a local "max-min" policy in the absence of a global mechanism for a

coordinated optimization. Rudeness has an additional advantage: it ntroduces a

natural flow-control mechanism. Namely, new packets are prevented from

advancing into lower layers by packets which already reached those layers.

Therefore, the flow of packets to regions which are heavily loaded is restricted

by the very load itself.

Another method to decompose the conflict resolution problem and restrict it

to layers, is to split the channel between layers so as to eliminate inter-layer

conflicts. Let us reconsider the network of Figure 2.3-2. We split the channel

into 3 different subchannels using frequency or time division. Each

subchannel may be considered as a different "color". We assign a transmission

channel (color) to each layer in the network. The first layer is assigned a

"green" color; the second layer is assigned a "red" color; the third layer is

assigned a "black" color; successive layers are colored green, red, black,
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alternatingly. Each PRU may use one color for transmission and the other two

colors for reception.

Note that with directional antennas only two colors would be required.

Frequency (or Time) division among layers does not pose the same tradeoffs as

in a single-hop FDMA. In a single-hop PRNET FDMA (TDMA) preallocate the

channel regardless of the immediate channel demand, thus wasting a substantial

fraction of the channel and creating undully delays, when the demands are

bursty. In a tree-like network, a packet crossing a layer uses the channel at the

point of crossing three slots. Therefore, at most one third of the channel can be

used. Thus, Frequency Division among layers, using 3 divisions, is only a

natural mechanism to render a more orderly crossing between layers. Delays are

not made longer and no additional channel wastes are introduced. Frequency

Division between layers is, thus, a natural mechanism to obtain effective

channel utilization.

Now that our netivork is decomposed, the competition and conflict resolution

are restricted to single layers only. By adjusting his power properly, a PRU may

reduce the number of PRUs in his destination layer, (precedeing layer) that hear

him, to one or two. The interference may be greatly reduced and adaptive

sharing becomes a feasible solution for inner layer interference.

Let us consider a generic network member PRi . The set of all PRUs from the

layer above PRi, which are heard by PRi, will be called: control envfronment of PRj.

Each PRU needs only to resolve conflicts within the specific control

environment to which he belongs. We make the assumption that a PRU may
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adjust his power so that he belongs to at most two environments (the case A

where a PRU is permitted to be a member of three environments, follows suit).

In terms of the urn model of the previous section, each PRU is a ball which .

may exist simultaneously in at most two different urns; such a PRU is said to be

a "shared" P1U. Each control environment may conduct its own distributed

lottery in order to decide access rights to its members (using adaptive coins in an

ALOHA manner or drawing from the urn according to the Urn scheme of the

previous section). The problem is that shared PRUs have to adapt to two

environments. Indeed, shared PRUs are using two lotteries to decide their access

rights. They should have no problem of decision if they win or lose in both

lotteries simultaneously. However, if they win one lottery and lose the other

what should they do?

While an optimal solution of the dilemma of shared PRUs may be complex,

suboptimal solutions may be easily described. One may choose to let a shared

PRU transmit only when he wins both lotteries. This provides a natural penalty

for PRUs which choose to live in two environments (thus causing more-

interference). The other extreme is to favor shared PRUs letting them transmit

whenever they win any lottery. Between the two extremes we have a

spectrum of strategies: individual coin tossing to resolve the dilemma;

estimating individual probability of success vs. individual probability of

collision: etc...

To conclude the discussion we see that decomposition of the access right

conflict into small environments, enables us to turn problems of multi-hop

organization into problems of one hop organization. In particular, with the aid

:,: 1 12



Of $,ecom position, our Urn scheme may be implemented in a tree-like network.

The experimental and analytical study of these options is beyond the scope of

this work and is left for future research.
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2.3.3 CUTTING THROUGH" THE NETWORK

With the aid of decomposition through channel "coloring", we may introduce

"cut throughs", i.e., immediate repeating of packets. Since successive layers

talk and listen over noninterfering channels, we may use the PRUs as radio

repeaters to relay the packets farther as they arrive. This Is possible if the PRU

is endowed with the capability for a simultaneous use of the three channels.

Cut through Is also possible in cable networks using a broadcast scheme of

communication.

Cut throughs in packet switched networks, have been studied by P. Kermani .

[KERM77]. The exact analysis of the performance of cut throughs, where

collisions occur, is beyond the scope of our discussion.

The distinctive nature of cut throughs in a broadcast network, is that the

PRU may serve as an intelligent channel. Indeed, suppose a PRU may decide

whether the recieved signal is the noise of a collision or a V-ccessfIlA ,

transmission, then collisions may be eliminated on their way. T'he network

behaves like a one hop PRNET with an "intelligent" channel which identifies

and eliminates some collisions on their way.

As an example of the use of intelligent channels, consider a binary network,

i.e., each PRU has at most two "hearing sons" in the successive layer. Let us

assume that each busy node decides whether to transmit or not, by tossing a

biased coin. A transmitted packet is relayed down the tree from Its origin to the

71 root. If two packets reach the same node at the same time the collision is

detected and is not relayed forward.

11
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Clearly, the station (root) will receive one successful packet whenever an

odd number of packets get transmitted. Whenever an even number of packets

are transmitted a collisions occur which eliminate all packets. If p is the

probability of transmission assigned to the coins, then the probability of a

successful transmission, given that n node are busy, is:

(2.3-1) S J--0 ,J+I )piJ+1( 1 p)n-J-1 (1/2)[1-(1-2p) n ]

This expression is clearly maximized when pl/a, the maximal value being

1/2 (for any n)O). Thus, a binary intelligent channel may use an ALOHA cut

through scheme to obtain a throughput of 1/2, with no problems of instability

or control. Moreover, the transmission policy and the probability of success do

not depend upon the load on the system or its size.

The above example is unrealistic (at least In the context of present PRNET

design) because the hearing topology is not a design parameter. It could only

serve to demonstrate the value of intelligent distributed channels.

Nevertheless, in -systems for which the communication channel is an expensive

commodity while processing is relatively cheap, one could se the advantage of

intelligent channels.
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3. PROBLEMS OF INTERFERING QUEUEING
PROCESSES

(OR. HOW STEEP IS THE ASCENT FROM ONE TO TWO?)

In this chapter we consider the queueing processes occurring in the buffers

of two interfering PRUs. This is a typical instance of a multi-dimensional

queueing problem in discrete time, that is, a problem of interacting queueig-

processes. Problems of multi-dimensional queueing processes arise in any

computer communication network. Interaction between the different queueinig

processes arises through the communication protocol (which conditions the

activities of one process on the state of the others) and/or the shared

communication medium. 2:

In some cases the communication protocol or the communication medium

* eliminates the dependencies between the queueing processes, and then the

multi-dimensional problem may be reduced to a collection of one-dimensional.

queues. However, if the queues interact properly, through sharing of server

and/or arrival processes, it is usually impossible to reduce the dimensionality.

Moreover, If an approximate reduclion is used, the effects of sharing may be

* .. lost and the analysis may miss its very purpose. Therefore the problem of

analyzing interfering queues is of prime importance.

When it comes to a problem of a single queueing process there exists an

abundance of analytic solutions. Yet, the ideas upon which most solutions rest,

may be traced to a common algebraic process [KING63]. It is possible to show

(Obid) that multi-dimensional queueing process cannot be solved (in general)

through the same methods. Ther:fore a set of new tools is required.
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Thschapter presents the problem of two interfering PRUs and some possible

appoxiatesolutions. The next chapter is devoted to the development of a new

set of tools to solve multi-dimensional queueing processes.q

1171



3.1 THE TWO BUFFERED PRUS

3.1.1 THE SYSTEM

We consider two PRUs communicating packets to a common destination over

a time slotted shared channel. Packets arrive at PRi from a Bernoul source of

rate Xt (i1 ,2). The PRUs use a Slotted- ALOHA channel access scheme. That is, a

busy PRU decides Indepemdently whether it should transmit or not by tossing a

biased coin; he transmits if his coin shows Heads*. #1 (is 1,Z) will designate the

probability of Heads on PRi's coin.

Interaction between two PRUs, as those described above, may arise in

numerous ways. First the arrivals of packets to a PRU may or may not depend

upon his transmissions; dependence arises if the PRU serves as a repealer. thus

new arrivals are blocked by transmissions; Independence occurs if the PRU is a

terminal whose packet production is not interfered with by the commuuication

process. Second, the service process of packets at one PRU may depend upon the

service process of the second PRU; e.g., collisions of packets result in a possible

loss of service. Third. it is possible for the transmissions of one PRU to interfere

with packet arrivals to his fellow. Therefore it is possible to consider many

models for "two buffered PRUs" problems.

We choose to consider a few models, increasing the interaction between the

two PRUs gradually. We make the assumption that collisions result in a total

loss. The difference between the models is in the structure of interaction

ONote that our model of Slotted-ALOHA does not dltilnguish btwwn "new" and "revamaintted"
packets.
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between the two PRUs; this is illustrated in Figure 3. 1-1.

I. The first model is that of two terminals talking to a common

destination. Interaction is limited to collisions between

simultaneously transmitted packets. There is no interaction

between packets arrivals and transmissions. This is the classicl-

Slotted ALOHA model with NuZ users.

a. The second model accounts for the case of two repeaters. In

addition to collisions between simultaneous transmissions, there is

interaction between arrivals and transmissions. Arrivals of

packets to each repeater art? blocked by his own transmissions.

3. The third model assumes that the two repeaters hear each other.

Therefore arrivals to one repeater are blocked not only by his own

transmissions, but also by the transmissions of his fellow.

4. The fourth model is a "maximum interference" model. The

additional interaction is between the arrivals to the two PRUs. We

assume that the population of terminals which generate packets

for each PHU is heard by both PRUs. Therefore simultaneous

arrivals are precluded by collisions.

It is also possible to consider other models of interaction between two PRUs.

For instance, one may consider tandem arrangements, capture effects, flow

control mechanisms etc... However, we shall restrict ourselves to the above

models only. The methods that we employ may be easily adapted to other
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120



models of interaction.

Let Of be the number of packets buffered at PR1 at the begining of slot

t. Qt-(Q0 is a random walk (RW) on the positive quadrant of the two

dimensional integer lattice. Figure 3.1-2(I-IV) depicts the transition structure

of Qt for our four models of interaction respectively. All four models form a

nearest neighbor RW.

Our problem is to find a closed-formi expression for the steady-state distribution of Qt

- Provided that it exists - in terms of the parameters of the two dimensional random walk

(TDRW), Ai and pi. We should also determine the conditions on the parameters

so that the RW converges to a steady-state. Both problems are open and hard

for, as we shall prove, none of the methods which are used to solve the one 7

dimensional RW in the presence of boundaries, provides sufficient tools to solve

our problem.

Problems of interacting queues arise in almost any scheme of resource

sharing. Dynamic schemes of sharing present two theoretical difficulties.

First, the coupling of queues makes the problem essentially two-dimensional

rather than simply a set of independent one-dimensional problems. Second, the

change in the nature of the service when one queue (or more) empties presents

a difficult boundary value problem.

The combination of dependence and boundary problems is the source of both

the theoretical difficulty and the practical value. Approximate models avoid

the difficulty, therefore they are usually unsuitable to explore the effects of

sharing. Exact solutions, or a system of more refined approximations is
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required, If the effects of sharing are to be present in the solution. Therefore,

the solution of the two buffered PRUs bears a significance to many other

problems of sharing. This significance is reflected in the apparent similarity .

between the equations for the two buffered PRUs, problems of processor "

sharing, problems of routing along the shortest queue etc...

The investigation of two dimensional models of interfering queueing

processes is the subject of the present chapter and its successor. We proceed

with a brief sketch of the history of multi-dimensional RW (MDRW). Then we

use Kingman's unifying view of queuing theories [KING63] to show that the

inherent difficulty is of the same nature as that of solving G/G/k systems,

which is the reason why none of the known methods of queueing theory can

help us. This is followed by a development of some simple heavy and low I
traffic approximation schemes. Unfortunately these schemes are crude and -4

insensitive to the details of the interaction between the two queues. Next we

explore our fourth model. Luckily enough, the problem possesses a product

form solution and may be completely solved within the scope of simple

methods. The solution has some surprising features, foremost among which is a

singular improvement of performance when the PRUs choose to be rude, i.e.,

transmit with probability i= 1. Moreover the increase in interaction, from one

model to another, beyond a certain threshold seems to have only minor effects

upon the behavior of the system. Therefore the delay- throughput performance

of the fourth model can serve as an approximation for the first three models.

This approximation is excellent for the second and third models as shown by

simulation. Finally we use Klngman's stability conditions to solve the stability

problem deriving capacity results.
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It is impossible to apply the simple methods of this chapter to obtain exact

solutions for the first three models. When all known methods fail we need to

develop new ones. The next chapter is dedicated to the developmelt of now -I

techniques to attack the TDRW problem.

.41.
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3.1.2 STATE OF THE ART (MDRW)

The history of RW dates back to Laplace. One dimensional RW has been

throughly explored (SPIT64, KEMP61, FELL63]. However the

multi-dimensional RW (MDRW) remaina mostly terra-incognita to this day.

The first application of RW models, of which the author is aware, appears in

Lord J.W.S Rayleigh's work IRA19L80, RAYLE87]. Rayleigh applied RW models

to the study of ensembles of waves, all possessing the same frequency and

amplitude but having randomly distributed phases. In the course of his

investigation, Rayleigh developml the diffusion approximation which he used

to derive a multi-dimensional central limit theorem. The name "Random Walk" 1
was coined only two decades later by K. Pearson [PEAR05] who initiated the

study of the one-dimensional RW.

The next stage in the development of MDRW was achieved by G. Polya

[POLY2 I ]. Polya solved the recurrence problem for unbounded MDRW. His

celebrated result is that the unbounded, symmetric nearest- neighbor RW is

recurrent Iff the dimension of the state space is smaller than three. Polya's

work provided the impetus for research into recurrence of RW on some general

state spaces. The research into unbounded MDRW culminated in the work of

Dvoretzky-Erdos [DVOR5 I] and J.F Kingman [KING63].

The study of MDRW in the presence of boundaries, started with the work of

Courant-Freidrich-Lewy (COUR28]. The authors were interested in

discretizations of boundary value problems for partial dt. rential equations. In

their celebrated paper they point out the similarity of some boundary value

* lproblems of potential theory and heat flow to the problem of mean time to
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absorption of MDRW in the presence of absorbing boundaries. The actual

application of the idea was carried out by W.H. McCrea and F.J.W. Whipple

[McCR36. McCR40] a few years later. V.D. Barnett [BARN63, BARN65]

expanded this work connecting the potential-theoretic approach to a

generalized form of Wald's identity.

The study of absorbing boundaries has been carried out by researchers from

both fields: the probabilists who were able to apply methods of potential theory

to attack problems of first hitting time; the numerical analysts who were able A

to utilize the analogy to apply monte-carlo methods to boundary-Value

L problems of partial differential operators.

The solution of of the problem of absorbing boundaries yields a Green

Function for the MDRW. It is possible to reduce any other boundary conditions

into a system of singular integral equations with kernel given by the Green

Function [SPIT64, KEIL65]. This relation between bounded MDRW and singular

integral equations is essentially the underlying mechanism of our solution to

the TDRW. However, we shall proceed to solve the problem directly and will

not separate it into a problem of computing the Green Function and solving

singular integral equations w.r.t. this kernel.

The problem of recurrence or MDRW in the presence of boundaries was

treated by J.F Kingman (KING63]. Kingman applied Foster's stability criteria

[FAST53] to generate simple, geometric, sufficient conditions for stability.

Foster's criteria are expressed in terms of Liapunov type functions. Kingman's

method is in essence a generalization of well known results about the stability -.

of differential equations with boundary conditions [LEFS58]. We shall draw
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upon Kingman's results in the sequel. Kingman's work was the first and, an far

as this author could find, the last result in this direction.

The behavior of some special MDRW on infinite or periodic lattices has been

explored and applied by physicists to problems of statistical mechanics of solids

[MONT64, MONT73]. The results have been extended to handle some simple

boundary behavior such as that arising in a defected lattice.

There have been few attempts to extend fluctuation theory to many

dimensions, of which the most important development is probably the results of

C. Hobby and R. Pyke [HOBB63]. Unfortunately, the combinatorial approach

poses insurmountable difficulties when one tries to approach the MDRW

*. through extensions of Ballot theorems to many dimensions. Similar difficulties

are encountered when one tries to extend Renewal theory to many dimensions.

The results obtained are very limited (for'example see [HUNT74]).

Finally, the behavior of a MDRW in the presence of general boundaries is

almost completely open. The first attack on a bounded MDRW is due to J.F.

Kingman [KING61]. Klngman solved the problem of two queues in parallel,

, where an arriving customer Joins the shortest queue. Kingman's method of

attack is tailored to the two queues problem and does not lend itself in any

simple manner to generalizations. Kingman's promise to generalize the method

to attack general two dimensional problems (at the end of his paper) has, so far,

never been fulfilled.. It took researchers more than fifteen years to understand

Kingman's method [MCKE77].

We discovered Kingman's paper at the spring of 1976. Our work is in some
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limited sense, a generalization of Kingman's solution process. We noticed a

similarity between Kingman's solution and- the Wiener-Hopf technique. At the

end of 1976 we had already generalized the Wiener-Hopf technique to solve the

general nearest neighbor positive TDRW, where diagonal movements are

excluded. The solution (YEMI77] is carried through a set of transformations of

the problem to a functional equation over a torus and may be explicitly written

in terms of Jacobian elliptic functions. Since then we were able to derive the

solution to the more general TDRW. The complete solution is presented in the

next chapter from both a geometric and algebraic point of view.

Recrntly the problem of interacting queueing process has attracted a few

researchers. This interest have been spurred by both practical needs and the

rediscovery of Kingman's work. At the end of last summer Guy Fayolle, from

IRIA, brought to our attention his work [FAY077] on the problem of TDRW

with no diagonal movements. Fayolle has successfully reduced the problem to a

Riemann-Hilbert problem, then applied well known integral representations of

the solution to the later. A somewhat simpler reduction process will be

presented here for the sake of completeness. However, the general TDRW

problem does not reduce to a simple Riemann-Hilbert problem but to a

Riemann-Hilbert problem with a shift. This is proved in the next chapter. The

':2 solution of Riemann-Htlbert problems with a shift requires further

sophistication. Therefore rather than pursuing a reduction process We prefer a 2
method of direct attack which exposes the full solution directly. The ultimate

goal should be to develop a solution algorithm which is completely algebraic.

Fayolle also brought to our attention the paper by the Russian mathematcian

V. A. Malyshev [MALY7Z]. Malyshev's work is carried in full abstraction and
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seems to be far from the concrete level at which we wish the solutions to be

given. It provides a theoretical complementary study which together with

Kingman's work, Mckean's, Fayolle's and ours forms a complete solution of the

TDRW.

To summarize even simple MDRW poses extremely difficult problems for A

solution. We do not know how to handle MDRW in three or more dimensions.

In two dimensions we do not know how to solve non nearest neighbor walk

(although our solution process could be generalized to handle such problems).

We do not know how to handle different geometries of the boundaries. The

solutions that we shall present tend to become very complex. The problem of

obtaining closed form solution to the general problem is most probably hopeless.

However, can we get some good working approximate methods of solution?

The works which were described above present different aspects and views of

the problem (modulo some natural overlaps). It seems that we currently posss

enough understanding to approach the more general MDRW problem.

129



3.1.3 TIlE EVOLUTION OF TWO DIMENSIONAL RANDOM WALKS

In the sequel we use the name TDRW and notation Qt to denote the most

general nearest-neighbor two dimensional RW, restricted to the closed positive

quadrant. The general transition probabilities are depicted in Figure 3.1-3. Let

,t(Q) be the probability distribution of the queueing process Qt.

We define the following transforms:

" AII(Zw)a w I -as a gra5  4 f1/o

~2 or, 1zj

1)Iw /w] 1

which emphasizes the geometry of the associated motions. We shall use the

* following notation for the above transforms: -
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Figure 3.1-3: Transition probabilities for the general TDRW
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A" zb) 
L

A"(z~w

A1 (z,w)

AOO(z~w) (p

In terms of these transforms, the evolution of the JRW in time is completely

described by. -t+1 t t tG (z'W) G (z~w) +. All (zw) G (zw) + Ate (zw) %1 (z) +

+ A"0 (z~w) Gft (w) + AOO (z~w) G

Where-

1(Z) 4 A a fpt (0) z1
(3.1-3)

Gil (w) V Zi~ t (0, Q1

1* t (0.0)
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And

At t t t t
a (zw) 4G (z'w).+G,* (Z) +Ga (w) +.

U qlag Og irt (Ch. 0 2 ) 31 W 02

If the RW is stable (ergodic) (COX65] then, as t grows to infinity, It(QZ)

converges to w(Q), r(O) being thei steady state distribution.

Let us define the following limiting transforms:

11 t
G (z~w) it-.),, G (z'w)

to t
G (z.w) it im1..)(T) G10 (z,w)

(3.1-4)
01 tG(z.w) it in.)j Go, (z,w)

The steady state behavior of the RW is completely described by the. following

functional equation:

(3.1-5)

0 zA 1 (z.w) Gil(z,w) ,A 1 (,z~w) GIG (z) ,A"' (Z,w) G"1 (w) * m(zXw) GU

This equation in the four unknowns G11(z,w), GIO(z). (3"'(w) and GOO, contains

all the informnation that we have about the steady state behavior of the EW.
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That Is, the RW is stable iff "Uato 3.1-5 possesses a uniique (up to a

multiplicative factor )solution. G1 99 31, and 00, such that

(3.1-6) Gl(zw) is analytic In the polydish. Dz(1xDw~i)

G"(z) and GOI(w) are analytic in D2(l) afld Dw(1). respectively.

*Here Dz(a) 4(z: 121 (a) and Dw(a) is defined similarly.

* The determination of the solution of 3.1-5 which satisfies the analyticity

* conditions 3.1-6. is our major problem.

The main Idea which we pursue is to consider the algebraic curve:

* (.17) 0 =Al (z.w) :ap(w) + q(w) + r(w)/z

WSWz + t(z) + vW/)I

*where p(w) A[w I iwj -f,:

(318 -'a,' w I I/ ] '

r(w)4('w I 1/wi ]6

and s(z), t(z), v(z) are defined similarly in terms of Z.

We call the curve defined by equation 3.1-7 the chvaer~is*~ ewni of the EW.
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On this curve the steady state equation reduces tot

(3.1-9) OzA tO(zw)G 1*(z) + A'(zw)GO(w) + A(z.W)G"

We call this functional equation: the boundary equaion. The idea which we

pursue is to solve the boundary equation first then urn. the results to obtain a

solution for the steady state equation 3.1-5.

Sometimes. it will be more convenient to consider a different form of

expressing the steady state equation 3.1-5. We shall employ one Unknown

function only

_(!-,)AG (zw)G '(z)G G(w)+4

In terms of this unknown function, the steady state equation assumes the

form

(3.1-10) A"G(z~wWz A16OG(z,0) + 1A"G(O,w) +10A G(O,O)

Here the coefficients are readily computed to bet

A1O(z~w) A A"(z,w)-A 1 (z,w)

201(z~w) .4 A11(z,w)-A01(z,w)

ANz~w) A A1(z,w) + Amn(z,w)-Al(z~w)-A!*(zw)

We shall return to these transform relations In the fourth section of this

chapter, where we solve the "maximum Interference" model of the 2-buffered

queues, and more heavily In the next chapter, where we solve equation 3.1-5

for a number of cases of interest.
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3.1.4 SIMULATION RESULTS FOR THE FOUR MODELS

The four TDRWs corresponding to the four models have all been simulated for

the case of two PRUs which are completely symmetric, L.e have the same arrival

rate and transmission probabilities. Figure 3.1-4 depicts the typical

delay-throughput relations for a PRU in the four systems. Figure 3.1-5

illustrates the relation between input rate and throughput for the four models.

The transmission probabilities chosen for simulation are 0.5 (stability

considerations show that the input rate to each queue should not exceed 0.25).

The steady state distributions of the number of queued packets are

excellently approximated by geometric distributions. More precisely, if 1f(n) is

the steady state distribution of the number in queue, then we consider the

function logr(n). If i(n) were geometric with parameter p, i.e., Wrl)( 1-p)pn.

then logwr(n)alog(I -p)+nlogp; thus, logr(n) would have been linear in n. In 7

fact, the logarithm of the simulated i(n) turns out to be excellently

approximated by a straight line. Moreover, the values of the respective

parameter p, as computed from the direction of the line (logp) and its value at
n=O (log( I -p) ) seem to be in excellent agreement. We call the parameter p, so

computed, the uti1ration parameter of the queue (for obvious reasons). The

"utilization" parameter for the geometric fit of the steady state distribution is

"depicted in Figure 3.1-6 as a function of the Input rate. The accuracy of the

! geometric fit motivated our attempts to develop a "one pole" (i.e., geometric)

approximation to the transform or the distribution. -A

A surprising effect is the sensitivity of the system to a change in the hearing

- relations. The increase in interference from the first system to the fourth
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Figure 3.1-4: Throughput-Delay for the four models
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improves the delay-throughput performance (paradoxically). The passage from
the first model to the second model improves the performance significantly in

spite of the fact that the two models are almost the same. However, the passage

from the second model to the third and fourth hardly affects the

delay-throughput curves. Since the fourth model may be solved in terms of

simple formulae (see section 3.4.3), it can serve as an excellent physical

approximation to the second and third model.

The process may be generalized to any number of PRUs. That is, we may use

maximum interference models as approximations of other interference

structures, knowing that the approximation is excellent beyond certain

threshold of interference. It is left for a future research to characterize this

threshold behavior.

.4
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3.2 WHAT MAKES THE PROBLEM SO HARD ?

3.2.1 KINGMAN'S ALGEBRA OF QUEUES

In this section we consider our problem from an algebraic point of view. We

employ J. F. Kingman's [KING63] unified view of queueing theory. As we

shall see, none of the methods that solve one dimensional queueing problems,

may solve our problem. The immediate conclusion is that we should try

approximations and/or develop a completely new set of tools to solve our

problem.

First, let us briefly review Kingman's algebra of queues. Kingman's point of

departure is the equation for the evolution in time of the waiting time in a

GIG/I queueing process

(3.zt ) w,, =w,,-, + uj]+

Here. w, is the waiting time or the n-th customer; u,, is the excess of service

time for the n-th customer, over the arrival time of his successor. The function

(x]+ assumes the value x if x)O and 0 otherwise.

The evolution equation for the probability distribution of the waiting time

process is given, respectively, by

(3.2-Z) g, = IT (egrf)

Here g. is the distribution of w,,; f, is the distribution of u. ; "i" is the

convolution operation and 11 is a "sweeping" operator which takes all the mass

of a given m, 3sure which is concentrated on the negative numbers and

"sweeps" it to (i.e., places it at) the origin.

11
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Kingman shows that the operator ]1, when considered over the algebra M of

all finite signed measures on E (E is a one dimensional Euclidian space), is a

projection with an interesting closure relation to the convolution operation.

Namely. the range and the null space of the projection are closed w.r.t.

convolution (thus forming a decomposition of M into a direct sum of two

sub-algebras). Projections possessing this property are called Wendel

projections. The methods of solving one dimensional queueing problems are

demonstrated to follow from this particular algebraic structure of the operator

I. Indeed. all major schemes for solving one dimensional queues are shown to

be but different realizations of the same algebraic factorization process appUed

to Vendel projections.

Towards the end of the monograph ([KING63] page 49) Kingman examines

the question of characterization of Wendel Projection operators for general

Euclidian spaces. In particular, if the function i] Is replaced by any function

#:Rk ---- >Rk, and if Il is the corresponding operator on the algebra of finite

signed borel measures on Rk. then a necessary and sufficient condition that we

can apply the factorization process to the operator I, is that the function A

satisfies the condition

(3.2-3) For all x.y e Rk. the two pairs:

#(x + y). O(x) + O(y) and O(x +(y)). O(x) + y) are equal

It can bo readily shown that G/G/k problems cannot be solved using any of

the G/G/I schmps because the associated projection operator is not a Wendel

projection. Kingman summarizes his finding " This would seem to imply that some

radically new idea wil be needed before one can hope for a general solution to GIG/k".
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3.2.2 PROJECTION OPERATORS ASSOCIATED WITH BOUNDED TDRW

Let us apply Kingman's approach to some typical, two dimensional, simple, j
positive RW. We reconsider the positive RW and boundary behavior which

.,results from some simple "sweeping operator". Figure 3.2-1 represents the

-,.. simplest sweeping operator, I.e., when the walk tries to cross the boundary

towards the forbidden region, it is immediately projected onto the respective

axis. The corrsponding projection is given by:

(3.2-4) Z :l---- >RZ

-) (x.y). ([x][y])

It is easy to verify that the function @I(x,y) is a projection on R Z . The

corrpspond injp swerping operator is a projection on the algebra of signed

measures on I. The range of the projector is the set of measures concentrated

on the closed po.sJtivp quadrant. The kernel of the projection consists of

measures concentrated on the closure of the third (negative) quadrant, and

whose total mass is zero (so that they are swept to a zero measure). It Is easy to

check that the range and the kernel are closed w.r.t. convolution. Therefore

the sweeping projector is a Wendel projection. The TDRW should be soluble in

terms of classical methods. Indeed, in this case the one dimensional projections

on the x, y axes, perform independent, one dimensional TDRW.

Unfortunately, the simple model above is an exception. If we modify the

boundary behavior even slightly, the resulting walk can no longer be solved

using classical methods. For instance, let us consider the boundary behavior of

Figure 3.2-2. An attempt to move into the forbidden region, results in no move.

The corresponding projection is given by:
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I (xy) if ro, Y0
(3.2-5) zxy -"'

(0,0) otherwise

We show that the corresponding sweeping projector Is not a Wendel

projection. The range of the sweeping operator consists of measures supported

on the closure of the positive quadrant. The kernel of the sweeping operator

consists of the space of measures whose support is in the closure of the other

three quadrants, and whose total maws is zero. This last space is not closed w.r.t.

convolution. Thus. the sweeping operation is not a Wendel projection. This

will follow if we exhibit two measures in the kernel, whose convolution

product is not swept to the zero measure. An easy example is furnished by:

-I at (Z.- 1)

-1 at (4.-1)

and

2 I at (-1,2)

-1 at -1,4)

It is easy to see that the convolution 0 is concentrated at the points (1,1),

(3.3), (1,3) and (3, 1)1 thus, it is "swept" unto itself and not the zero measure.

Similarly, one may check that many other simple types of boundary behavior

* result in sweeping operators which fail to be Wendel projections. Thee fore,

the respective TDRW cannot be solved using fartorization methods such as those

Semployed for one-dimensional queueing processes. The inevitable conclusion is

that we should be prepared to develop new tools to solve the TDRW problem.
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Figure 3.2-2: A *Sweepings operator which is not a Wendel projection
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However, before we venture into the difficult problem of an exact solution,

let us try some simple approximations. This Is the sub ject of the next suction.
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3.3 APPROXIMATE SOLUTIONS

3.3.1 HEAVY TRAFFIC APPROXIMATION

Our point of departure in developing approximate methods, is to simplify the

relation between the boundary and interior behavior of the queueing RW. k 4

reasonable simplification arises if we adjust the transitions at the boundaries so

that the projections of the two dimensional walk on the two axes perform a

one-dimensional HW. This is the Heavy Traffic approximation. A typical such

walk is described in Figure 3.3-1. We shall call a TDRW whose projected

movements are one-dimensional RW: projectable walk. The projected

one-dimensional RWs are called: marginal RW. The solution for the marginal

walks is trivial (i.e., the problem becomes Identical to basic Queueing Theory).

Consider our first model of section 3.1.1. Under the Heavy Traffic

assumption each PRU sees the other as a Bernoulli source of interfering noise.

We ignore the details of the interaction of the two queues. The interaction is

reduced to a constant interference. The queueing process at each PRU is the

respective marginal RW associated with the TDRW.

Let us solve the general one-dimensional RW with transition structure as in

Figure 3.3--, then apply the results to the marginal RW of the heavy traffic

approximation. The transformed steady state equation for the distribution of

number in queue is given by:

(3.3-1) Al (z)GI(z) + A(z)G8 0

where
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Figure 3.3-1: The projectable TDRW and its associated marginal RW
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MI
AG(z)=-= 1 (Qz0 and GO A 0A(O)

(w(Q) is the steady tate probability of the number in queue.)

A'(z)- -1), p ./J ,-

and

AO(z) -(fl'))( I-z)

are the transforms of the respective one-step transition distributions.

Figure 3.3-2: Transition diagram of a nearest-neighbor. positive RW

The solution of equation 3.3-1 is easily found to be

1I(1-p z) - If
(3.3-2 Glz)" G () G 1 (z) + GO" 1/(i-p)-V

The steady state distribution is geometric (modulo a perturbation of the

probability of the state 0). with "utilization parameter":

(3.3-3) p •&10 :'
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The expected number in queue is given by

p
(3.3-4) "

(1-p) (V +Vp)

The expected throughput (i.e., the average number of transitions to the left)

Is

(3.3-5) + a/(V + Vp)

Using Little's result we find the expected delay to be

.:4(3.3-6) T a 6/S z I/(l-p)/

(Thi ]at equation for the expected delay of a

Bernoulll-input/Bernoulli-service/I queueing process is, not surprisingly,

similar to the corresponding M/M/ I formula.)

Now specialize the above formulae to the heavy traffic RW. The utilization

parameters, the expected numbers of' queued packets, the expected throUgputs

and the expected delays for the four models are given in table 3.3-1.

Let us consider the symmetric case with a tA it p a 0.5. Let ), 1  '- be

the arrival rate. The relation of the heavy-traffic and light-traffic (see next

section) approximations to the results of simulation is described in Figures

3.3-3 to 3.3-14, below. The first collection of figures describes the respective

utilization parameters as functions of the input rate. Both light and heavy

-:traffic assumptions lead to a geometric steady state distributions for the number

in each queue. The utilization parameter is the parameter of the respetive

geometric distribution. The utilization parameter of the steady state
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distribution obtained from simulation is the parameter of the geometric fit to

the actual distribution (the error in 1he approximation is extremely mall).

.PhBV fht .:

iWi

Table 3.3-1: Heavy anid light traff le approxiniatiom for the four models

44

The Second collection of figures depicts the relation between input rates and
the actual throughputs delivered by each queue, as given by simulation and

approximations. The third collection of figures compares the delay-throughput

relations obtained from simulation and the heavy and low traffic

approximations.

It may be seen that a simple approximation such as the heavy traffic

approximation, provides a good fit to the actual behavior of the EW, Only When

* the traffic is extremely heavy end/or the interference Is heavy. HoWuver,

when we wish to compare Slotted-Aloha with deterministic schemes the heavy
traffic approximation is a bad solution. After all the use of Aloha has been,

* . . * *.*,*- , . . . .

rconee s obasic e tho fro aighlto bnd treaffi ondly.tafi iii

approx matio s.1:,
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To conclude this section. we see that a better approximation is required If we

wish to explore the interaction between the two queues.
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3.3.2 LIGHT TRAFFIC APPROXIMATION

The failure of the heavy traffic approximation to provide an acceptable fit to

simulation, leads to a search for a light traffic approximation. Here we make

the assumption that the two queueing process are very lightly loaded. The

effect of collisions is negligible and may be ignored (hopefully). We assume

that no interaction between the queues arises. 74

The transition structure of the queueing RW at each PRU is similar to the

general model of Figure 3.3-2. Let us specialize the analysis of the general

one-dimensional model to the light traffic approximation. The steady state

distributions of the number in queue are, again, geometric. The utilization

parameters, expected numbers of queued packets, throughputs and delays are

given in table 3.3-1.

The light traffic approximation has been compared to simulation. The results

are depicted in Figures 3.3-3 to 3.3-14. It is seen that light-traffic

approximation deviates from the actual performance even for very light

traffic and low interference. Therefore it is unsuitable as an approximation

method.7

The comparison of the behavior predicted by our approximate results to the

actual performance is disheartening. (The only surprisingly exceflent

approximation is given by the heavy-traffic approximation for the

delay-throughput performance of strongly interfering models). We are lead to -q
believe that the elimination of interaction between the boundaries and the

interior, in our approximate models, should be improved in favor of more

sophisticated models. After all it is this very interaction which renders the
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ALOHIA scheme useful. The whole idea of resource sharing by two bursty users

is to trade the overhead and slower service when both queues are busy for the

improved rate of service when they hit the boundary. Rather than eIuIrnIflAtilg

this fruitful interaction we should try to solve for it.
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Figure 3.3-3: Heavy and Light traffic approximation of utilization; modei I
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Figure 3.3-4: Heavy and Light traffic approximation of utilization; model 11
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Fgure 3.3-5: Heavy and Light traffic approximation of utilization, model III
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Figure 3.3-7: Heavy and Light traffic approximation of through put-load: model I
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Figure 3.3-9: Heavy and Light traffic aoproximation of th,,oughput-load; model III
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Figure 3.3-11: Heavy and Light traffic approximation of delay-th rough put: model I
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Figure 3.3-14: Heavy and Light traffic approximation otcdelay-throughput; model IV
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3.3.3 AN EXACT SOLUTION OF THE FOURTH MODEL

OR. CLOSE ENCOUNTERS OF A SINGULAR KIND

Let us recall the transition structure of the third and fourth models of section

3. 1.1. The third model represents an increase in the interaction between the

two PRUs. The fourth model is a "maximum interference" model, that is,

incoming packets encounter each other as well as outgoing packets. The

interference controls the input flow of packets into the system. In the fourth

model the diagonal movements of the queueing RW were completely eliminated

by the cross interference of incoming and outgoing packets; this simplification

enables us to derive the solution using a relatively trivial computation. In the

third model, only the north-east diagonal is left, but this is enough to render

the solution an order of magnitude more difficult than the fourth model.

Figure 3.3-15 depicts the transition probabilities of the fourth model.

The TDRW of the maximum-interference (fourth) model possesses a

simplifying feature, namely, the relation between the boundary and the

interior transitions resembles that of the projectable TDRW of section 3.4.1.

The only difference is that the transition probabilities at each boundary are not

exactly the projections of the interior movements but projections multiplied by

constants. This TDRW is not projectable, yet the similarity to a projectable

TDRW renders it solvable in terms of a simple product form of the transformed

- steady-state distribution. Let us proceed to derive the solution.

We reconsider the steady state equation 3.1-5 of section 3.2. 1.

--. OAG! + 0I 0 + A0. 1 + AD0G 0
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* Let us scale the coefficients representing the boundary transitions and the

-. respective transforms. That is, let us define

(3.3-7) G'O(w) -GC~)P

Then, the steady state equation may be rewritten in terms of the scaled

transforms. The new form i~s similar to the equation for a projectable TDRW. It

is possible to solve the scaled equation, since the respective projectable RW has

no diajgona] movemients. arid use the results to obtain the original transform.

*The result of the cumbersome computation is the following product form

expression for the transform of the steady state distribution of the fourth

model'

(3.3-8) G (zw)

Here p, 1 NI #1101~i~' and p2 A1 i X 2 1/112

*The expected niim ber of packets in the buffer of PH1 is given by

(3.3-9) 49A(1-1):p/lp)~,~ 1

'The eVcPresson is correct when 1,01 and 0 1. We shall consider the cam A it Is I3 separately.
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In particular, when the two PRUs are similar (symmetric system) the

expected number in queue becomes

(3.3-o10) x
:;' ~(1 -0;( + pp

When the transmission probabilities gt (i=1,2) are 1, the behavior of the

system is simplified. The number of packets in each queue is at most one. The

bivariate queue-ing process Q t has 3 states, whose steady-state probabilities are

easily computed to be w(O.O)- /( l .) i(,1)(1,0O);X/(1+ X). From these

steady state probabilities one can readily obtain the different performance

measurs.

(3.3-1 1) 0 = )N/(1+) (when t= 1)

The overall expected throughput (of both traffic streams) may be computed

to be

(3.3-gg 1 9

Using Little's result we may compute the expected delay of a packet

(3.3-13) Tm

its I j
Let us note that the expected delay decreases as the probability of
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transmission increases towards 1. Moreover, when the probability of

transmission I& assumes the value 1 a discontinuous improvement of performance

occurs; the expected throughput exhibits a Jump increase and the expected

delay has a Jump decrease. This discontinuity will soon be elaborated. The

delay-throughput performance of the transmission policy =0.5 is compared in

Figure 3.3-16 with the results of simulation.

Figure 3.3-17 depicts the discontinuous behavior of the delay T as a function

of the transmission policy. The "rude" choice of the transmission policy to be

A= I causs a singular decrease in the delay.

The optimality of the rude policy is intuitively clear. Indeed, once a packet

enters the system it is guaranteed, immediate uninterrupted service. A new

packet is permitted into the system iff the system is empty and no other packet

tries to enter. After entry, the expected delay is exactly one slot and no channel

waste in collisions or empty slots occurs.

The employment of a rude policy results in a phasing of the arrivals and

transmissions. The system exhibits phased service cycles. An arriving packet is

delivered from the second hop (the terminal level) to the first hop (the repeater

level); then it is delivered to the station. At the end of each cycle the system is

ready for the next service cycle. Figure 3.3-18 depicts a typical phased

propagation of packets. Through phasing, the system obtains the best

*' performance which is possible for any two hop system, namely, delay of

one-slot per accepted packet (minmum possible) and, in the case of "maximum

interference", maximal throughput possible (as much as the limits Of

interference permit).
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Figure 3.3-16: Delay-throughput performance of the "maximum

interference' model
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Figure 3.3-17: Discontinuous decrease in delay for the "rude4' policy
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Figure 3.3-18: Phased ProPagation In a "rude" maximum-interference model
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The surprising effect is the singularity of the rude behavior. The

discontinuity of performance arises because of the discontinuous change in the

• -: transition structure of the queueing RW Qt. We shall have further occasions to

meet singular systems in chapter five. Singular combinatorial structures of

interference are explored in section 5.3. There again singular improvements of

* performance occur when a rude policy is selected. The cross interference is

utilized to obtain phasing of packet movements through the network. The

phasing obtains perfect scheduling of the transmissions.

What is the reason for the difference in performance when the transmission

policy is selected to be j&=0.999999 and when it is selected to be I&=1 ? The

answer is simple. The rude policy precludes the possibility that the two queues

will ever be busy at the same time. The policy ;t=0.999999 renders the event

"both PRUs are busy" highly improbable yet possible. When both PRUs finally

become busy they will keep colliding with each other for a very long period of

time. Therefore the expected delay exhibits a discontinuous decrease when A

increases from 0.999999 to 1.

Another surprise is the sensitivity of the two buffered PRUs problem to small

changes in the interference structure. Indeed neither the first, second or third

models even admit a rude policy. Nor is it possible to solve those models in

terms of a simple computational procedure such as the one above. A small

change in the combinatorics of Interference may lead to a totally different

solution.

Let us compare the Slotted Aloha scheme of channel sharing in the fourth

model to a deterministic allocation of the channel. We choose to split the

176

. . . . . . . . . .. ... j
-.;*,."- * . . . . . . . . . . . .



channel between the two PRUs on an equal basis. That is, each traffic stream

gets "half of the channel" (say, through a frequency division) for It's exclusive

use. Nevertheless the incoming traffic to each PRU shares the same channel

with the outgoing traffic. Each PAU uses a coin tossing scheme to resolve

' collisions between incoming and outgoing packets.

The quoueing processes at the two PRUs are independent. The queue length

at each PRU performs a one-dimensional, positive, integer RW. The transition

structure of this RW is depicted in Figure 3.3-19. Note: the length of slots is

now twice the length of the slots in the case of shared channel. The delay and

throughput expressions need to be scaled accordingly.

o@ Q & -- G O & .....

Figure 3.3-19: Transition diagram for the "spilir channel model

Let us specialize the solution of section 3.4.1, for the general RW with a

similar transition structure. The transform of the steady state distribution for

the number in queue is given by:

*517
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(3.3-14) GW zI(-p)-L
I(1-p) - is

Where2

(3.3-15) p~g

The expected number In each queue becomes

* The overall expected throughput (of both streams) becomes

(3.3-17) S=Vk(i.)k)

The expected delay experienced by packets is

* (3.3- 18) T ZI(#-X))2

The best transmission polity is again the rude policy. It Is always better to

* transmit the packet at hand than to keep silent hoping that an arriving Packet

* ~will make use of the silent slat. The throughput does not depend upon theI

transiion policy. However the rude policy does not exhibit a discontinuous

jump. Indrs', as p approaches I the performance of the PHUl smoothly

approaclivs that of tho rude policy.

* Let its rr'considr'r the expre'ssions for the transforms of the respective

distributions. 3.3-14 and 3.3-8, of the one and two dimensional queueing

procpssos. Lot the transmission policy converge to the rude policy. The two

transforms converge to

(3.3-19) fimp--),G()z(z+)/(4.>)
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and (-.A

(3.3-Z0) Jim,,.) 1 G(z.w) -
( I IAX ) .

respectively.

While the first limiting transform represents the transform of the limiting

steady state distribution of the one dimensional queue; the second limiting

transform does not re'present the limiting distribution of the two queues.

Indeed, it assigns a po.nitive mass to the state (1,1) which is clearly never

oblained under thr ruid policy. The source of the disparity is the discontinuous

change of pe.rformancf, when the transmission probability is raised from

0..)99999 to 1.

Let us now compare the performance of the two configurations, that is, two

completely Interfering streams, sharing the same channel and two streams,

using a deterministic splitting of the channel to avoid interference (but sharing

too). We consider the two configurations at their best, i.e., when rude policies

are used. res'pective throughput functions 3.3-1Z and 3.3-17 are plotted

against the Figure 3.3-20 depicts the ratio of the throughputs 3.3-12 over

3.3-17 as a function of the input rate X. The clear result is that rude sharing is

to be prefpred to chainnel splitting for all reasonable input rates, i.e., )(1/2. So

much as far as throughput is concerned.

Let us compare the delay performance of the two configurations. Fix the

*transmission policy to be it. The ratio of the expected delay functions 3.3-13

over 3.3-18 is given by

(3.3-21) +l2(I.e~) i ZfsA s
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Figure 3.3-20: Ratio of throughputs for unsplit/split channel, vs. load
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This expression is always smaller than 1. Thus sharing is to be preferred.

When the input rate approaches 0, the shared channel is twice as fast as the

split channel. Figure 3.3-2 1 depicts the ratio'of delays as a function of the "

input rate.

Finally let us note that close hearing encounters for models with more than

two PIIUs exhibit similar singularities. Indeed, if arrivals are blocked by

transmissions and if simultaneous aprivals are precluded through a "maximum interference"

model, then the exact solution of the qucueing MDRW is given in a product form and the

rude folicy is Optimal and singu/lar.

To conclude the discussion of the solution for models with close encounters

between packets duo to a "maximum interference" hearing we have:

- Sharing is better than deterministic allocation.

- Multi-dimensional systems may exhibit dichotomies, such as the

singularity of the rude policy.

4-.4"

-Rudnone. when possible, may obtain perfect scheduling by

employing cross interference to create phased service cycles.

- The behavior of multi-dimensional systems may be very sensitive

to changes in the corn binatorics of interference.
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Figure 3.3-21: Ratio of delays for unsplit/split channel, vs. load
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4. A WIENER-IIOPF TECHNIQUE TO SOLVE THE
TDRIV

In this chapter we develop a Wiener-Hopf technique to solve the general

integer, nearest neighbor, positive TDRW. We shall first describe the solution

technique from a geometric point of view, then demonstrate some applications

starting from easier TDRWs to complex cases. From a conceptual point of view,

the problem is reduced to that of a Wiener-Hopf factorization over compact

Ri'mann surfaces of Genus 0 or 1. From a computational point of view, the

solution is usually vpry complex.

Perhaps. at this point, it is worthwhile to comment on the possibility of

obtaining a closed-form solution. A; we shall see, even the simplified cases of

.- TDRW that may be solved in terms of "known" functions, lead us to the

boundaries of our small dictionary of "known" functions. Moreover, the

algorithms suggested by the closed-form expressions are usually more complex

than approximate numerical solutions. It seems that the very objective of

deriving closed form solutions is. most probably, unattainable, unless of course

we expand our dictionary to "know" new functions. In our case, it is necessary

to "know" new classes of Theta functions and integrals of Theta functions.

The main objective of our investigation is, thus, not necessarily to develop

closed form solutions, but tc develop a better geometric and algebraic

understanding of the problem. AO far as computations are concerned, the

"solution" proposed should mainly s;erve as a basis for a set of approximation

schemes, similar to heavy traffic "one pole approximations" in one dime sional

queueing theory. This as well as other interesting problems are beyond the
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scope of this dissertation and are left for future research.

The Wiener-Hopf technique is extensively discussed in [NOBL56]. The

relation of the Wiener-Hopf technique to the behavior of bounded Markovian

processes is described in (FELL64. KEMP6 I]. The Wiener-Hopf technique plays

a major role in queueing theory. Particular applications to queueing processes

can be found in [COHE76. KING63, KLEI75]. Singular integral equations and

the Ripmann-llilbertr problem are presented in [GAKH63, MUSH48] these are

intimately related to our problem, since it is possible to represent the problem of

computing the transform of thn steady-state distribution as that of solving

singular intepral equation whose kernel is the Green-Function of the TDRW

(KEILG5].
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4.1 THE GEOMETRY OF THE TRANSFORMED
STEADY-STATE RELATIONS

4.1.1 REFORMULATING TIlE PROBLEM

Let us recall the steady state equation for the general nearest neighbor TDRW

(equation 3.Z-5 of section 3.2. 1):

11 10 10 01 01 0 0
(4.1-1) O=A(zw)G (z.w)+A (zw)G (z)+A (zw)G (w)+A (z,w)G

(The superscripts of the first coefficient A', are dropped for convenience).

This equation in the four unknown: G (zw), G (z). G (w) and G , contains

all the information about the steady state behavior of the RW. That is, the RW

is stable iff equation 4.1 -1 possesses a unique solution, such that

S 10 0
(4.1-2) G (z,w), G (z) and G (w) are analytic in the respective disks

(4.1-3) G 1(1.1)+G (1)+G1(1)°G 31

The determination of ,he solution of 4.1-1 which satisfies the analYticity

conditions 4.1-2 and the normalization condition 4.1-3 is our major problem.

Let us note in passing that once we obtain a solution of 4.1-1 subject to the

analyticity condition 4.1-2, it is possible to satisfy the normalization\cOndition

4.1-3 trivially. Therefore we shall assume for the time being that G has been

.J
factored out from the equation 4.1-1.

The main Idea which we purrue is to consider the algebraic curve:

(4.1-4) Oa A(z.w) a z p(w)+zq(w)+r(w) = wzs(z+wtz)+v(z)
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which we have called the chaactistiSc curVE of the RW. On tbis curve the

steady state equation reduces to:

to 10 01 01 U

(4.1-5) O=A (z.w)G (z)WA!(z,w)G"(W).A (z.w)G

~jj; the boundary equation first, then use the results to obtain a solution for the

Wteal this fquctiona eqaton th -osdr 1.ain h de st ov
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4.1.2 TIlE CIIARACTERISTIC CURVE

Let us consider the charbcteristic curve defined by equation 4114 of the

previous section. Lot S A ((z,w) A(z,w)sO) denote the Riemann surface of the

curve. We shall use the letters P, Q, R etc... to denote points on S. The surface S

represents a cover of both the Z and the W spheres, with the natural projections

[SING65]:

h 1:S ---- >Z

(4.1-6) h('A
.• .

,,: h 1(z.w) ="z• "

The projection h2.S ---- >W is defined similarly.

The equation defining S is in general bi-quadratic. Therefore the genus

[SIEG69] of the surface S is in general 1 (i.e., the surface is topologically

.I equivalent to a torus). However, in some special cases the genus degenerates to

0 and S can be represented as a sphere in terms of rational or periodic functions.

Such dr'gnerate cases arise if the transitions of the TDRW in the interior are

restricted to one side of a hyperplane.

As an example of degeneracy consider two PRUs using an isarit/hmc-like

flow-control policy whereby the total number of queued packets in the system

"-;'. 2;iis permitted to grow if f one PRU Is idle. The imarithmic pol/icy can be implemented
in a number of ways. One possibility is that a PRU accepts a new packet iff its

fellow PIRU Is idle, or has just used the channel successfully. The transition

structure of the isarithmically controlled TDRW is depicted in figure 4.1-1.

Another TDliW of genus 0 arises from the problem of "shortest queue"
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[KINGG I, McKEA76]]. In the following section we derive a closed-form

solution to the general TDRW of genus 0. Let us proceed now, to examine the

more general case.

In general S is a surface of genus 1. It represents a four branched, two

sheeted covprtng of the Z and W spheres. A concrete form of S can be generated

by pasting two copies of the Z sphere along the two branch cuts. The resulting

surface is a torus. The equation defining S, being bi-quadratic, to each value of

z there are two points on S. (z,wl) and (z,w 2 ), which solve the characteristic

equation. The permutation of the two solutions corresponding to a single value

of z Is denotril T I . The operator T1 is an automorphism of S which is projected

onto the identity transformation of Z. Such a map s called a cOver transformation

(SING55]. Indeed, the group 1  I, TI), where I is the identity on S,

represents alll cover transformations of (S,h 1 ). (Note that T, rl.) Similarly one

defines T? to be the cover transformation which permutes the two solutions of

the characteristic equation for z, given a value of w. The group M2 (I, T2 )

constitutes the cover transformations of (S,hp).

The maps Tt can be figuratively described as flipping the two sheets of

S. Figure 4.1-2 depicts the relations between 5, Z, W and the operation of the

automorphisms Ti.

The torus S may be further covered by a universal covering [SING55], depicted in

figure 4.1-2 as the plane U. The plane U is tesselated into an infinite number of

period parallelograms. Each parallelogram represents a copy of the torus S,

which has been dissected along two nimple closed curves that cross each other at

a single point, such that one curve encloses one of the branch cuts and the other
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Figure 4.1-1: Transitlon structure of the *1sarthmico system
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curve crosses the second branch cut. Such curves are called hmoog. bsis for

the surfacp S [SINr;55]. The plane U is equivalent to the torus once we identify

points whose difference is an integral linear combination of the tWO basic

periods Zw I and Zw 2 . The last pair of complex periods forms a basis for the

lattice of parallelolrams in the U plane.

Finally, the plane. U is a uniformizing plane for the curve S. That is, it is

possible to rpreent z and w as uniform (one-valued meromorphic) functions

over the plane U so that A(z(u),w(u))=O. The functions z(u) and w(u) are

doubly periodic w.r.t. the periods ZWl and Up . In other words, the whole

process of covering provides a parametric representation of the characteristic

curve in trrms of elliptic (doubly periodic and meromorphic) functions. The

actual computation of functions which uniformize the characteristic curve

will be carried out later. In this section we wish to mask the computational

details, giving a rudimentary description of the solution.

WhPn the characteristic curve degenerates into a curve of genus 0, the

uniformization process is simplified and may be carried out in terms of rational

or trigonometric (simply periodic) functions. The computational details will

soon be presented.
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4.1.3 THE GEOMETRY OF THE ANALYTICITY REGIONS

Let us consider the unit disks of the Z and W planes, Dz( 1) and Dw(1)

respectively. Both regions may be lifted to any of the covering surfaces which

represent the characteristic curve S. Since we intend to solve the boundary'

functional equation 4.1-5 on the surface 5, subject to analyticity conditions in.

the respoctive regions 4.1 -2, it is imperative that the structure of these regions

bp considere.d.

Let us consider the characteristic equation when w is restricted to the

boundary -.Dw, i.e., IWIC 1. On this curve, the following inequality holds for Z

/ /° .

on ADZ:- -

(4.1-7) IA(z.w) */zwI a:I [w 2 w I] a . 1 I S I * zwI
,o "o a2

~/

The Pqx ltt in the leftmost inequality holds 1ff w-zul. Therefore for a

fixed Wy- I such that jw: 1, the functions (of z) g(z) 4 A(z,w) + zw andL

flz) A-zw satisfy on aD, the inequality jg(z)j C If(z)I which implies (using

(Rochs's theorem [FOrfS65]) that A(z,w)zf(z) + g(z) has inside Dz the same

umber of zeros as f(z). Thus, when Iwl=l and w~l, Alz,w) has exactly one

solution for z inside the tnit disk and one outside. For wa I it is easy to check that theI

/ two solutions for z are, z= 1 and z= 1/p I (P i p(1)/q(1)).

Therefore the W unit circle corresponds (under the map hlohi 1 ) to two

simple closed curves in the Z plane; one which lies inside DZ and the other

outside Dz. The point ws I corresponds to two points z I and Z Il/P1. Since the
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two curves do not cross each other or the unit circle 6Dz , the respective 4

curv s on S corresponding to the two unit circles must all be homologous to the

same element of the homology basis of S.

The parameter p, has an interesting practical meaning: it is precisely the

ratio betwwn the average drift to the right and the average drift to the left,

when the 11W is in thp interior region. This ratio represents a utilization factor of
the, queueing procr.ss described by the horizontal axis. Namely, Pl is the ratio
between the averae rate of arriving customers and the average rate of service,

for the horizontal quue, when both queues are busy. Recall that in the case of

one queue. a necissary and sufficient condition for stability is that p1<1.
Hnceforth. we restrict our attention to the case of strong stability i.e., p1I and

p< 1.

The geometrical structure of the analyticity regions is now obvious. The two

unit disks are described on the torus S in Figure 4.1-3. We may choose to call
the two curves which meet at the point (1,1) of s: r and r 2 respectively. The

other two curves are given by T(r 1 ) and Tp(r' 1 ) respectively.

It Is now easy to visualize the operation of the automorphisms T1 and T 1 ,

vis-a-vis the respective unit disks. Figure 4.1-3 depicts the full picture. The

curve 61 reproennts the branch :ut interior to the unit disk of Z, which was

used to enerate the torus S. This branch cut remains invariant w.rt. the

permutation or thp two sheets. Inideed, the map T1 only reflects the upper lip of

the cut on it's lower. The unit Z disk is reflected w.r.t. the curve b1 . The map

Ta behaves similarly.
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Figure 4.1 -3: Representing the domains of anaiyticity on S
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Finally. on the universal covering the regiouns corresponding to the unit disks

are infinite curvilinear strips. The automorphisms T, and T2p correspond toa

automorphisnis of the uniformizing plane. The only automorphisms of the

* uniformizing plane are linear maps. The condition that T1Tj27 implies that the

* linear maps in question are of the form -u44nj. where 01~ is a constant. The

values of the respective constants; may be found from the position of the points

corresponding to the (z.w) pairs: (1.1), (l,lp2 lp 1). The computation is

- rolatively easy as we shall later see.
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4.1.4 A WIENER-IIOPF PROBLEM ON A TORUS

Let us rewrite the boundary equation 4.1-5 on the characteristic curve S. We

use the letter P to denote a generic point of S. In the region ((z,W): IzdwI( 1}

on S, which we denote DznDw, permitting ourselves some abuse of notations,

the following functional equation holds:

10 10 01 ('1 00 00
(4.1-8) A (P)G (P)+A (P)G (P)+A (P)G =0

-t. I
10 0

G (P), Go (P) represent the lifting of the respective functions to the surface

S. We choose to abuse our notations rather than complicate therm to a point

where thpy are no longer transparent. When a danger of confusion may arise

accuratp notations will be employed.

In addition to the boundary equation, the unknown functions must be

automorphic w.r.t. the respective groups of covering transformations. That is:

G to(T P)=G1°(P)

*(4. 1-9) "::

G (TzP)=Go (p)

The problem is to solve 4.1-8 subject to the conditions 4.1-9 and the

analytictty of the respective functions in D. and Dz.

10 01
Suppose that we solve the equations above for G (P) and G (P), then by

virtue or 4.1-6 the two functtons may be projected onto respective functions of

2. z and w respectively. The proje:tions are analytic in Dz and Dw respectively.

Once the boundary transforms have been determined, it is possible to determine
11 00

the interior distribution G (z.w) and the normalizing factor G . Therefore we

should proceed to solve the functional equation described by 4.1-8 and 4.1-9.
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The first step is to continue the equations analytically from DznDw to a larger

domain. This is easily carried out. Indeed, the coefficients of the equation

4.1-8 are all meromorphic functions over S.The equation 4.1-1 can be A

immediately continued to DzUDZ. To continue the functions further we make

use of the automorphisms. Applying T. to P in the equation 4.1-8 and

eliminatin, G (p) from the two equations, we get:

(4.1 -10) G o(TP)=o(P)G (P)+O(P)

where (P) and O(P) are meromorphic coefficients and T T 1oT2 .'

Let its consider the map T over the torus S. T takes the region DzUDw in a j
-1

spiral movem,,nt to an adjacent region (with some overlap). Equation 4.1-10

can be itrod to oxtend G to T(D.UDw) and then to the regions generated from

DzU Dw by succs.i ive iterations of the operator T. The process may be thought of 2
as pasting function elements over sleeves cut from the torus S. The result is that

G Is extended to a function which is meromorphic on a long sleeve which

enclos s itself in a spiral manner. Perhaps the best description of the surface

generated by the pasting procedure, is Escher's ingenious Spirals reproduced in

Figure 4.1-4.
01

In a similar manner we can continue G to the surface generated by the

pasting procedure. Finally, equations 4.1-8 and 4.1-9 should hold on Escher's

10 0t
spiral whre the functions O and G are meromorphic.

Let us consider the analytic continuation over the uniformizig plane U. The

region DzUDz on S is covered by an infinite set of curvilinear strips in the U

plane which are parallel to each other w.r.t. the period 2w-z of S. Let us consider
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any one of those strips (i.e.. we restrict ourselves to a branch of the cover of U

by S and extend that branch from a period parallelogram to a strip by analytic

continuation using the periodicity w.r.t. 2Uo,).

We start with our particular choice of a strip DZUDz and iterate the operator T

to continue the equation and the unknown functions analytically. The map T

corresponds to a translation u ---- )u.2( 1 - l2 ) of the U plane. The strips DzUDz

are translated in parallel. A translated strip intersects it's preimage. This is

merely to say that the strip DzUDz contains a fundamental domain of the map

T. When the iterations are carried indefinitely, the whole U plane is covered.

In
Therefore, the function G may be extended to a meromorphic function over

10
the plane U. Similarly, the function G may be extended to the whole plane.

Finally the principle of permanence of functional relations [SVESH73], implies

that equations 4. 1 -1 and 4.1-9 may be extended to the whole U plane, and that

both functions G'°(u) and GPI (u) are periodic in Zw,.

4.1.4.1 Summary

Let us summarize our findings, reformulating the problem over the U plane.

1. It Is possible to uniformize the characteristic curve with the aid of

elliptic functions z(u), w(u) such that A(z(u),w(u))=O. Wlog, the

two periods of z(u),w(u), i.e., 2w, and 2-02, may be choosen so that

the first is real and the second is a purely imaginary number.

Furthermore, the origin of the U plane may be selected so that

z(O)=w(O): 1.

2. The function z(u) is invariant w.r.t the transformation

199JA
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-u S1wwhere Z(20 1 )s1 and w(201 )R11p 2 (these

relations may be used to compute the constant ni)* The function

w(u) is invariant w.r.t the transformation T 2 :U ---- )>-U+20 2 ,

where f12 is defined similarly. The constants 01and faare

purely imaginary and have opposite signs, wiog we assu.me that

h(0 100

3. The two unknown functions G+(u) A Gl(z(u)) and G_(u) AG*(z(U))

can be extended to the whole U plane where they are periodic

w.rAt Zwl1 and satisfy the following relations:

a. The boundary equation: G+(u) a (u)G..(u) + 0(u). Here a(u)

and j3(u) are doubly periodic functions.

b. The authomorphic relations: G+(u) is invariant w.rAt TIMu

and G-.(u) is invariant w.r.t. TZ(u).

c. The analyticity conditions: G+ is analytic in D+ A Dz and G..

* is analyticin D_. 4 Dw.

* The problem posed by the third item In the above list is a generalized form Of

* the Wiener-flopf problem [NOBL53].

In what follows we shall demonstrate how the Wiener-Hopf factorizationt
technique may be generalized to solve problems of the above description. We

shall follow the computational details for some of the processes described above,,

in order to gain insight into the solution process.
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4.2 THE TDRW OF GENUS ZERO

4.2.1 TIlE GEOMETRY OF TIlE CHARACTERISTIC CURVE

Let us consider a TDRW of genus zero such as the one arising from the

isartthmic input control procedure, described in the previous section (see Figure

4. 1-1)I The characteristic curve is given by

(4.2-1) 0 z A(z.w) azap(w) +~ zq(w) + r(w)

where p(w)z&2. q(w)az(i-%)w * a and r(w) uw + xw.

We wish to find a uniformization for the characteristic curve. Namely, it is

required to represent z and w as uniform functions of some parameter u so that

4.2-1 is satisfied for each value of u. There are a few methods to obtain

uniformnization. We choose to employ a method which will work when the

genus increases. We uniforinize the cliaracteristic curve in terms of integrals

of the first kind on the curve.

The idea Is simple. Equation 4.2-1 may be thought of as an integral of

,1A A(4.2) 0 =dA(z(u)w(u)) =,i 4iz + j dw

along the characte'ristic curve.

Now a simple computation shows-that /

(4.-3) ri Z zp(w) + q(w) st + [42 (w)]

where 4 2 (W) 4 q(w)J2- - 4p(w)r(w) is the discriminant of the equation.

6AA
Similarly. one may compute aw Replacing the corresponding eXPressins in
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4.Z-2 we g~et an Euler equation for the characteristic curve [HALiP88, ELANC58,

SIEcG69]. Namely

*(4.2-4) 0 udz/[(41 (z)]I/ 2- + dw/[,&(w))I/2

(This e'quation was employed by Euler to obtain addition theorems for elliptic .

functions. Euleprs investigations mark the beginning of the theory of elliptic:

* functions. Further information about the fascinating history of this theory

* may bf, found in any of the above references.)

We~ shall procrnrd to integrato 4.2-4 in terms of trigonometric functions

* ~whr'n thw' grnxis of tho walk is 0 and elliptic functions when the genus is 1. We

follow Eulpr's method verbatim. Indeed our uniformization process is merely

that of set-king a curve over which the characteristic equation is an addition

theorem.

Let us consider the discriminant hjz) in details. When the genus of the AW

is 0 the function A1 (z is a quadratic polynomial

(4.2-5) 4 1(z) :a~za + Zb1z + c, -(S81 2 /a,) [1-(az4.b)a-/8

where

a1 A Ot -a,

A & 2 -4or 0.

"We choose the positive root.
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may be computed in a similar manner.

Now consider the following transformation of the variables:

x" (alz + b)/ 1 , y- (a 2 w + b2 )/8 2 .

Clearly dx = (a/62) dz and dy: (a 2 /8 2 ) dw.

In terms of these new variables it is possible to rewrite 4.2-4 as'

(4.2-6) 0 =dx/(0 - x2) I /  + dy/(1, yZ)1/2-

If u Is d.,finr'd (up to a constant of integration) by:

= dx:/( I-A /

then, equation 4.2-6 may be integrated to give:

x(u) = Cos(u - 01)

(4.2-7)
y(u) Z Cos(u -O1)

Hero (Z and are arbitrary constants of integration. This equation implies

the following representation of z and w in terms of u:

z(u) (I /a) [ Scos(u - 1l1) - b,]

(4.2-8)

w(u) (l/a 2) 2 Coslu " 2) "

"Note that a, -a2, so both factor out from the equation.
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This last equation is, up to a selection of integration constants, a

uniformization of the characteristic curve in terms of the Uniformlzing

4 parameter u.

* It is enough to fix one point of the curve in order to determine the constants

of integration. Let Us choose the origin of the uniformizing plane so that

Z(0) w(O)=1

A sim Pie computation gives the following values of f~and f~

(4.2-9) Cos%1  (a, + b,)/S1 and CosCl2 u(a, + b)8

Let us note in passing that the cover automorphisms of the characteristic

curve are given by:

Tt(u) =29, - u

(4.2-10)

=,() 0 - u

Namply,

(4.2-11) z(Tl(u))=z(u) and v(T 2 (uj) zw(u)

Finally, the composition of the two automorphisms yields:

(4.2-12) T(u) 4 (ToT?)(u): u44fl

Where A- (1/2) [ 2 The operator T~oT I is precisely T-1.

To conclude this section, it is possible to obtain a uniformization of the

characteristic curve in terms of trigonometric functions, using integrals of the
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first kind over the characteristic curve. The uniformization is given in

equation 4.2-8. where the integration constants are provided by 4.2-9.

In what follows we solve the boundary equation by uniformizing it over the

u-plane. We shall consider first the representation of the domains of analyticity

of the two unknown transformed boundary distributions. Then we apply a

Wiener-Hopf technique to derive the solution.

,,02
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4.2.2 THlE DOMAINS OF ANALYTICITY

The domains of analyticity of the transformed boundary distributions G'0 (Z)

and (301(w). i.e.. D.0 ) and Dw( ), are conformally represented upon the u plane,

by the inverse of the uniformizing map 4.Z-8. Let D+ and 13- represnt the

corresponding, repgions in the u-plane, respectively.

It is Pasy to check that ai + 2bi + Ci > 0 so that (aj + bt)- Si2 - This, in turn,

implir thiat (aj + bi)/i 1 > 1. Therefore the definition of fl1 (4.2-9) implies that

both con ;tantsil arepurly imagiflary.

Now. w(0) and w(Pg1) are the two points on the characteristac curve, which

corre'spond to z =1. Since w(O)z1, we conclude that w(2~i)u lip2. Therefore if

0, 1. the'n the point it 2%1Z cannot belong to D-.. In a similar way one can

show that p, <I imiplies that Ui z Zf? cannot belong to D+. Therefore, the

assumption of s~trong stability (i.e., pj< I) implies that the two constants Im(flQ'

cannot hazit 'lie samr sign. Therefore. without loss of generality, ImAl) > 0 and

Jm(1Z) 0 .

The domains of analyticity D+ and D_. are depicted in Figure 42-1. Note that

D+ (D_) is symmetric w.r.t the line Im(u) a Im(fl1 ) (Im(u) =Mn2)

OHere IWOu denotes the Inninary part of the number u.
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7.7>]

4.2.3 THlE BOUNDARY EQUATION

Let us conside'r the representation of the boundary equation over the

uniformizing plane. Define G,,(n) 1 Gl*(z(u)) and Gju) G"(w(u)) . Over the

uniforinizing plane the boundary equation assumes the form:

(4.2-13) 0: A1 (u)G+(u) + A0 (u)G-(u) + AO(u)

Herr' A'0(u) A' 0 (zu),w(u)) and A01(u) and APO(u) are defined similarly. i

The analyticity conditions are: -

(4.2-14) G+00t and Gju) are analytic and zero freeI
in D+ and D_. rerpectively.

Finally. the two unknowns are invariant w.r.t the autorphisms T, and TZ

respectively:I

-+21 az) G+u)

G..(2fl 2 - u) =G_.(u)

Let us rristrlct oitrselvps to the case of symmetric characteristic curve, i.e.,

A(z~w) z A(w,z). In this case the computations are simplified and the solution

process can be better understood. The generalization to the non-symmetric case

I.s stra igh t-forward but require:- somewhat cumbersome computations of no

Interest.

In the case of symmetric characteristic curve a -O 20 (W109 we Assume

that WmS200).
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4.2.3.1 The as.sncialed Imogeneous equation

Consider the homogeeneous equation associated with the boundary equation

4.2-13.

(4.2-16) X (u) = R(u)X_(u)

where I(u) ' - A10(u)/A0 (u). Wlog it is possible to assume that the strip of

common analyticity D rnD+ does not contain any zeros or poles of R(u) nor their

symmetric points w.r.t the line Im(z)=±Z_1. Let us assume that X+ and X- are a

solution pair satisfying the respective invariance and analyticity conditions.

Suppose we can represent R(u) as a ratio I.(u)/*+(u), where *+ (*. is analytic

and zero free function in the domain D+ (D_), invariant w.r.t T1 (Ta). Equation

4.2-16 can be rewritten as X+ +=X.'P.. The function f(u) described by the two

sides of the last equality is analytic in D+UD. and is invariant w.r.t both

transformations TI and T?, and thus w.r.t their composition T. Therefore f(u) is

a doubly periodic function analytic in the period parallelogram; this can only

occur iff f(u) is a constant. Finally, If a factorization as the one described above,

is possible then X+(u)=C/I (u) where C is some constant (X.(u) may be

computed similarly).

In conclusion we see that the homogeneous problem may be solved if we can

find a factorization of the coefficient R(u), as suggested above. It is possible to

pursue a gneral approach to the factorization problem, resulting in integral

expression of the factors. However, in our case the coefficient R(u) is a rational

trigonometric function and the factorization can be greatly simplified to a

purely algebraic process (this simplification resembels the classical

Wiener-Hopf factorization problem for rational coefficients).
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4.2.3.2 Factoriyatio" of thte htomogeneous equation

The function JIMu is obtained through a rational combination of simply

periodic functions and therefore can be represented in the form [HANC58]:

(4.2-17) 1(u) C exp(2kiu) 1 ~ii-ep2~-j]
ITjI- exp[Zi(u-bj)]

wherp a, and bj are the respective finite zeros and poles of R(u), C is a

Therefore, it is sufficient to solve the simplified homogeneous equation for

co'f f icients of the form (1I - exp(u-c)], I1( - exp(u-c)J and exp(iku). Let us

proceed to obtain these solutions.
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4.2.3.3 Soltint of the simplified homogeneous problem

Consider the following simplified factorization problem:

(4.2-18) *t4(u) - mz(u) *.(Au)..

i(u-c) t(u-c) iku
Where a(u) is either [1 -e I 1 -e ore The functions

'I+_(u) are analytic and zero free in the respective domains and satisfy the

authomorphic relations:

(4.2-19) *+(2W - u) f*+(u) and *.#(-ZW - u) f_.u )

i(u-c)
Consider the first type of coefficient, namely: (u) (1- e Let us

assume first that c ( D_ and consider the following functions:

(4.2-20) 0 1(u) n-O I -e'

M *,(U) Hn=O [ -u-c+2A +4nI)J

The Inequality lm(fl) ) 0 shows that e 40<1, implying the absolute

convergence of the infinite series U2= e ; this, in turn ((HANC58]

chapter I), implies that the infinite products above converge absolutely to entire

functions.

We-c)i(-u-c-2)
Clearly. 0lU+417) : *(u)l( 1 - e l ) and 0 2 (u.4f) 0 *(u)(1 - .

i(u-c)
Define *+(u) - 1 (u)4 2 (u) and I_(u) A t+(u)/[ I - e then:

.: llu-c))
+(u)= (1 - 0  *.(u) by definition of *.

21. P+(2-u) = '+(u) since xZ uj ( 24 u )"

- o,
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-u+-

3. - l(-2A-u)/[t - e

-' (u.4fl)/[ I - ei l u~c + ) ] *+(u)/[ - euc] =.U)

4. *I(u) has no poles and its only zero in D UD. is c

(note that 2AI-c falls outside the critical region).

5. *-(u) has no poles and no zeros in D+UD...

Therefore the pair T (u) and *.(u) solve the factorization problem for the

i(u-c)
coe'fficient [ - e for c D.,

In a imilar way it is possible to show that the functions
i(u-c),. ) 1 / (Ul 2 (u) and .(u) *+(u)[1 -e ] solve the factorization

p-.' ilu-c)]- l,
problem for the coefficient 1 - e when c e D..

Let us turn now to the case c i D+. It is possible to assume, wlog, that the

factors having roots in D+ appear with arguments having a negative sign, i.e.,

-i(u-c)
have the form 1 - e ].3 Consider the functions:

(422)4(1)rr el(-u+c+4nil)]

rl") et(u+c-?1+4ni)];: €#4(u) "'n-o [I -e

Define T.(u)*3 (u)+(u) and *-u)A*- .(u)[I - e i ( u - c ) ] then the

functions *- and *. may be checked to solve the factorization problem for

(1-e u for c t D+. The factorization problem for 1 - e i ) may be

solved in a similar way.

Suppose now that c D UD.. If Im(c)>O, then inspection shows that the

*Simply divide and multiply the original coefficient by the respective exponent.
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factorization problem is solved by the same functions as if c 4 D+. Similarly if

lm(c)<O tho solution is provided by the same process as if c 4 D-.

Finally, let us turn to the simplified homogeneous problem for coefficients of
iku

the form &(u) = e We claim that if kO0 then the factorization problem does

not possess a solution. In fact, suppose T+ and *. solve the factorization problem

iu
for i (cl-arly it Is sufficient to consider k-1 only). Then the functions and

''. are doubly periodic of the third kind (CHANC58], Ch. V). Moreover, they do

not possr 's. any z-ros or poles in the fundamental parallelogram. The only such

functions are constants (ibid.).

To conclud- the discussion, we have developed dosed form solution of the

simplified lwhnogencols equation, for the three cases of coefficients. The solution of the general

homogeneous problem ran be expressed as a product of solutions of simplified problems. In

the case of exponential coefficients roe have shown that a necessary and sufficient condition

for solvability of the homogeneous problem is that the exponential coefficient disappears.
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4.2.3.4 Solutinn of the non-homogeneous problem

The solution of the non-homogeneous boundary problem can be carried out in

a manner similar to the usual Wiener-Hopf technique for non-homogeneous

problems. Consider again equation 4.2-13. Let us assume that X+ and X_ are the

solution pair of the respective homogeneous equation for the coefficient

R(u) 4 -A1'(u)/A0 1. Let Y+(u) 4 X (u)G4(u) and Y.(u) be defined similarly. The

functions Y+ and Y. satisfy following variant of 4.2-13:

(4.2-2Z) Y+01) = Y.lu) + 3(u)

Whr ,rr (u) X.A"(u)IA().

In additon. the functions Y+. Y_ satisfy the respective automorphic and the

analyticity conditions.

Supporse we could represent the function (u) as: 3(u) _3.(u) - 0+(u), where

the two tems in the decomposition satisfy the respective analyticity and

authomorphic conditions, then the functions Y, + /3 = Y- /., represent

analytic continuation of each other into the fundamental parallelogram and are

analytic there and doubly periodic, therefore constants. Therefore,

G+(u) = #+1(u)/X (u) and G.(u) can be expressed similarly. Thus, we need to

solve the decomposition problem for the coefficient 1(u).

Again. it is possible to solve this last decomposition problem in terms of

integrals, using methods for solving the Riemann Problem with automorphiss.

Iowever, a better approach is to use the rationality of the function A/A 0 and j
the' thota-riinction striicture of X_, The idea is to use the well known .
representation of doubly-periodic functions in terms of a "partial fraction
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expansion" and then solve the above equation for each term in the expansion.

The dtisof tecomputation can be found CHANC58] and would be a simple

-' yet cumbersome' repetition of the Wiener-Hopf solution technique for

* non-homogpneous problems with rational coefficients (NOBL53]. This, we feel,

would carry us beyond the scope of this dissertation and is thus avoided here.
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4.2.3.5 Conciosin,,.

In the previous section we have illustrated the solution process for a quite

general TDRW of zero genus. As we have proceeded through the stages of the-

solution process, we have watched the complexity of the solution growing

beyond actual applicability. We can conclude that, computationally' speaking,

the solution of the general TDRW in terms of "closed form formulas" is most

probably unfrasrible.

Therefore, the above process should not be considered as a recommended

procedure for solving; the problem (simulation and approximate numerical

solution!- ar., much simpler). The major value of the process lies in. the

po. .sibility of deriving suitable approximations for the solution of TDRW from

its geomptric structure.

For example, one can approximate the behavior of G+(u), G.(u) in terms of

their dominating poles. The theta-like functions appearing in the denominators

of the functions havP one "nice" property, they converge (as infinite products)

very rapidly. Th,. the bIhavior of the solutions is completely dominated by

their most signficant poles.
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5. TIlE ECOLOGY OF RANDOMIZED CHANNEL
SHARING SCHEMES

5.1 CAPACITY OF RANDOMIZED ACCESS SCHEMES

5.1.1 THE PROBLEM OF CAPACITY

In what follows, we consider a PRNET which uses a coin tossing,

Slotted-ALOHA access scheme to share the communication channel. The

network model is thp one described in section 1.1. Let us assume that all traffic

Is direct-,! tow.ards a single destination. The parameters of interest are the input

distribution V= 4(vl-vZ ...... vN). vi being the fraction of the input traffic

arriving at PR1 ; the overall inpul rate 7, i.e., the the expected number of packets

arriving at the PRNET per slot; the routing policy R z (Rij), Rij being the

fraction of traffic routpr from PRi to PRj; the throughput distribution

U (u 1 .Ua ...... UN). Ut being the fraction of the total throughput processed by

PR1i; the total "throughput" s, i.e., the overall expected number of packets

which are successfully transmitted at each slot; the transmission policy

Ps (Pl.P 2 ....... PN), Pi being the transmission probability of PRi . The queueing

process at Pach of the buffers 4 = (O1.O?,...... ON ) describes a multidimensional,

positive. integer random walk.

Let us fix the routing R and the input distribution V. As we raise the input

rate V' some network queues are driven into instability. As long as all queues

are stable, the input distribution V and the routing R determine the throughput

distribution U (KLEI64]. The total input rate determines the total throughput

rate, as expressed by the equation s a Vxn where n is the expected
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communication path length. The number n is completely determined by the
routing R and the input distribution V. Therefore, given R and V, the input rate

Y determines the total throughput and vice versa. Therefore, let us consider the

total throughput of the network s. A suitable notion of network cap=Uty along U

should be defined as

C(U) 4 SUP( s S 5s U is an attainable throughput vector)

This requir.s that we define the meaning of "attainable" precisely. A

throughput s is attainable, if a transmission policy P exists for which the random

walk , dterinin.d by the pair (S,P), is stable. That is, none of the packet

queues wanders to infinity. Thus the problem of capacity is intimately linked

to the stability problem of our queueing random walk.

Ideally we would like to examine all pairs (S,P) - U being fixed - which

define a stable system and find the L.U.B of all the attainable throughputs -

s. Unfortunately, such a scheme is computationally infeasible since we do not

know a characterization of the stable (S,P)'s. As a matter of fact, only little is

known about stability of a multidimensional, bounded random walk.

In the case of one PIU, only one road to instability exists. All the PRU has to

do in order to become unstable is to let his queue drift towards infinity (on the

- average). The case with the multi- queue problem is different: there are many

*- styles which the PRNET may choose to turn unstable.

-4
In the absence of a computational characterization of the capacity notion.

defined above, alternative notions should be explored. One method of attack

upon the capacity problem is to assume some "reasonable" asymptotic behavior
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of the network as it is driven into the instability region. Such an approach

proved successful for one- hop networks. In this case the natural assumption.is

that instability is approached in heavy-traffic; i.e., all queues become busy all

the time.

The assumption of heavy-traffic yields a "worst case" notion of capacity.

Loosely speaking, the heavy-tratfic capacity represents the best performance

that the PHNET may obtain under the worst traffic conditions that may occur.

It is the maximum "payoff" that we can derive from the PRNET when the users

are placing the worst combination or demands. Therefore, borrowing from the

terminology of game theory, we wish to consider a max-min notion of capacity.

The max-rin capacity of the PRIET is defined as follows. Assume that all

queues are busy; then, given a roating matrix R, for each transmission policy P

it is possible to compute the throughput vector S = S(P). The map S = L(P)

transforms the set of all transmission policies into a compact domain

representing all heavy-traffic-attainable throughputs. Consider the ray in the

S space in the U direction. The maximal value of heavy-traffic- attainable S

along the ray S = s x U is called the "heavy-traffic" capacity along U.

Fortunately (or unfortunately, depending on your point of view) the

heavy-traffic assumption (namely, that all queues are busy when the network

is driven into instability) does not necessarily describe the actual behavior of

some classess of policies in general multi-hop networks. That is, the max-min

capacity may be substantially lower than the actual capacity. The reason for

the disparity, as we shall see, is the ability of some PENETS to select a

transmission policy which will take advantage of the hearing topology and the
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j
input distribution. Such policies phase the transmissions in a Manner whi¢h

eliminates wasteful collisions and a heavy-traffic condition altogether.

Nevertheless, we shall adhere to the concept of max-rain capacity and

consider networks whose actual capacity is different to be singular. There are

two advantages to this approach. First, the problem of computing the max-min

capacity is purely combinatorial and reasonably tractable, while the problem of

computing the actual capacity is untractable. Second, the ability of an ALOHA

policy to phase transmissions is indeed a singular phenomenon which depends

completely upon some peculiar properties of the hearing topology and the input

distribution; most networks do not possess this peculiar property and may have

a hard time detecting its existence once it does exist.

Our considprations will be both descriptive and prescriptive. Indeed, the

problem of capacity is intimately linked with the problem of choosing an

optimal transmission policy, that is, a policy that attains the capacity. This is

not unlike the Information theoretic definition of channel capacity.

We have had more success with the characterization of optimal policies of

transmission. Indeed, we shall employ some simple ideas of mathematical

economics to derive necessary conditions for optimality. This characterization

lends itself to a very simple distributed implementation.

In what follows, we shall consider first a one hop PRNET. We reconsider the

analysis of such a network due to N. Abramson in order to develop an insight to

the ideas employed later. We procee.d to solve the (max-min) capacity problem

for a tandem network. The problem of singularity is examined next. Finally,

20
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distributed algorithm to implement those policies.
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S.1.2 ONE HOP PRNETS

This section summarizes some of the capacity results for one- hop PRNETs

[ABRA73, LAM74, KLEI76]. The purpose of this review is to serve as an

introduction to some of the concepts which we develop later.

Let us consider a one-hop PRNET and fix the input distribution V (note

V = U). We wish to determine the capacity C(U) of the network.

In solving the capacity problem Abramson assumes implicitly that when the

capacity limit is approached, all queues in the network become busy. Under

this "heavy-traffic assumption" the expression for the throughput S in terms of

the transmission policy P is given by:

(5.1-1) Si C [pi/(-pi)] x E(I')

where

.(5.1-j) E(P)" Jl (I-Pj)

We shall use the name: Abramson operator to designate the operation

(5.1I-3) 5= -4_.(P) ,

which is defined by equation 5.1-1.

The operator S transforms the domain of transmission policies A A [0, 1]N,

onto the domain of heavy-traffic-attainable throughputs. Figure 5.1-1

describes the operation of Abramson operator for the case N 2 2. We se that the

domain of attainable throughputs forms a curvilinear simplex. We shall be

interested in the upper boundary surface of the throughput domain. This
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surface represents the throughput vectors S which are not dominated by any

other throughput vector.

S2 P2

S, P,

Figuire 5.1-1: Abraimson's heavy-traff ic throughput operator

A throughput vector S is called Pareto optimal 1ff

1. it Is heavy-traffic attainable, i.e., 5 L (P) for some transmission

policy P.

Z. it is not dominated by any other throughput, i.e., there exists no

attainable S'. such that S'>S. (here 5)5S means that for all 1~iSN,

S~iSSi with at least one strict inequality)
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A policy P which attains a Pareto-optimal throughput is called a Pareto-optimal

Policy. The idea of using Pareto optimality as our notion of optimality is simple.

The Pareto optimal policies represent a reasonable choice of a decentralized ,

resource-sharing network policy; for it is impossible to improve the

throughput of all network members simultaneously. A user who wishes to

obtain a larger share of the channel, can only do so at the expense of other users.

* The Pareto optimal policies may be characterized as the points at which the

Jacobian of the Abramson operator becomes zero.

The above statement has a simple geometric proof. Indeed, consider a

Pareto-optimal policy P0 and let S0 be the Pareto-optimal throughput

corresponding to P0. A small perturbation of P0 leads to a small perturbation of

S°. The respective perturbations are related through

(5.1-4) AS =$.(IO) x AP

where 6S is the Jacobian matrix of S(P).

If PO is an internal point of A s (O,IJN, it admits a set of perturbations

containing a neighborhood of zero. The extremality of SO impUes that the

admissible pertuibations of SP must not contain a neighborhood of zero. This is

possible iff the Jacobian matrix is singular. Thus, the Jacobian determinant of

. the network must be zero.

A simple computation CABRA73I shows that a necessary and sufficient

condition for a policy to be Pareto optimal is that:

(5.1-5) I P+P+ ..... PN
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The capacity problem has a straightforward solution. Indeed, the input

distribution U constrains the attainable throughpuits to the ray through the

origin at the direction U. The capacity along U is the value of s for which the

ray S a s x U crosses the surface of Pareto optimal throughputs. This is

* demonstrated in Figure 5. 1- 2.

SURFACE OF
PARETO-OPTIMAL

THROUGHPUTS

S7

DOMAIN OF
ATTAINABLE THROUGHPUTS

Figure 5.1-2: Geomnetry of the heavy-traffic capacity problem

When the input distribution is uniform, iLe., U 3(1, 1......1) the capacity

assumes its minimal value:

(5.1-6) CMU0-1IIN)N

which converges to lI/e when N4 grows to infinity.

The above derivation rests upon the heavy-traffic assumption. In a one hop

network it seems reasonable to assume that this max-minl capacity coincides

with the actual capacity. The notion of Pareto optimfality is the natural

geometric formulation of the capacity problem.



5.2 CAPACITY OF A TANDEM

5.2.1 WHY TANDEMS ?

A tandem is the simplest multi-hop carrier of packet radio traffic; its

investigation will provide some principles of capacity analysis and operation for

multi-hop networks.

We shall consider a tandem of PRUs using a coin-tossing Slotted-ALOHA

access scheme to share the communication resource. Each PRU hears his two "

neighbors only, as depicted in Figure 5.2-1.

Packets arrive from a Bernoulli source to the "upper" end of the tandem. The

PRUs serve as repeaters which forward the packets down the tandem to the

station at the "lower" end.

Let us name the PRUs according to their position in the tandein PRi t1.L.iN,

where N is the total length of the tandem.

Clearly the input distribution is VA (0,0 ....... ,1) while the throughput

distribution is U : (IIN)(1,1 .. 1. ). The average length of a communication

path is N, thus s : YxN. We shall abuse the name "throughput" and notation S to

denote the input rate 7 as well as the throughput of each PRU. Thus S here

corresponds to I /N-th of the throughput in the sense of the previous section.

First we search over wide sulclasses of reasonable transmission policies for

the actual capacity. We shall see that those policies which we consider for

candidates (to obtain the capacity) all yield a single notion of capacity identical

to the heavy-traffic capacity. Wo then resort to this heavy-traffic capacity and
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N -*-PPER END OF THE TANDEM

I0

:3

2

Figure 5.2- 1: A tandem network

227



compute its value as well as its asymptotic behavior for very long tandems. Let

us proceed to define polcy classes of interest.

One set of policies which the tandem may choose is the set of so-called Polite

folicies. Under a polite policy P, each member of the tandem, PRi , guarantees that

even when the whole tandem is busy, the rate of service at PRt is faster then

the rate of arrivals to PRi.

Formally, a policy P is polite if:

(52-1) PS(N) PS(N-1) < ............ < PS(i) < ..... < PS()

where

PS(i) - p1( - 1 )( 1-pj. 2 )

*, A polite policy attains any throughput S, such that S(PS(N). This intuitive

triviality has a straightforward uninteresting proof which we omit.

When we try to blow up the tandem in a polite way, all queues along the

tandem will grow simultaneously. Thus we have our first style to become

unstable, and with it comes the notion of polite capacity:

(5.2-a) CN 4 SUP(S j There exists a polite policy P which attains S)

Another family of policies which guarantee stability is the family of fair

policies. A policy is fair if:

(5.2-3) PS(N) PS(N-1 ) ......... PS(i) ........ a PS(1)

A fair policy is stable for any throughput S<PS(N). Again, if we blow the
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T Vi
* tandem in a fair way, all queues grow simultaneously. We let Cj denote the

fair capacity. Note that the class of fair policies generates a capacity notion

* identical to the heavy-traff ic capacity.

* An almost natural result is that the two notions of capacity which we

introduced, yield the same capacity. Indeed:

LEMMA

1. Thrre is a fair policy P* which atiains CN. that i:

2. The fair and polite capacities are the same.

PROOF:

(1) follows directly from the definition. To prove (2) we show first: Cpck

Let 00 be arbitrarily small and S -1 C; - i, then:

here P' is the policy of (1). Now decrease P*N by a small amount to got a pN

so that the rightmost inequality is preserved. We get:

PI 1 0(-PI) * =P;-l(1-P;J2Z)(l-P;-3) > PN(1-P;-)(l-Pw;a >5S

Let us continue and reduce p;_1 to) get a pN_ I which satisfies:

P1  ... PN-2(l"P;-3)(l-PN-4) > PN-(l'P;-2)(lP;-3) > PN(1..PN-1)(1-PN;- >5S
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We proceed inductively to reduce pt, at each step generating a Pi and

preserving two inequalities. After the N-i step a polite policy is obtained

which attains S, thus CNS = -. We conclude, CN 2 CN.

The second step is to prove the reverse inequality: CM k CN .

To derive CN_>CN we employ the following idea: we show that any S which

is attained by a polite policy P, is attained by a fair policy P; that is, we show

that S(CN implies S(CN , from which CN<CJ follows.

Let S be attained by a polite policy P, we construct a fair policy P which

attains S too, using an iterative "improvement" of P. The limit of the iterations

is P.

Let us define an "improvement" operator T over the set of policies P' T(P):

PN = S

(.-PN. 1)(1-pN )

P'N- I P#14

P'N- I The solution of =
I P*N-1 1-PN-3

P'N- I

P'N-- The solution of =

I P'N-2 1-PN-4

and so on.

Claim:

1. If (PS) is a stable polite i stem tMen so is (P',S).

2. P Ox P. I.e., P'i<Pl for all l;i-n.
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To demonstrate (2) we start with the inequality:

PN(l-PN..1)(1-PNJZ)> 5

so that

now

P'N- I P N- I

1 -EN-I -PN-3 I PN- I

where the rightmost inequality follows from the politeness of P. The last

inequality further implies:

E'N-I S N1

Proceeding along the same lines one may derive:

Vi Si:SN, p'i pi

so that the second part of the claim is proved.

Let us turn now to the first part of the claim; to show that it is true We Use

P'N( 1 -PN-1)( 1-PN-.3) > P14( l-PN-1.)( -PN2?)* S

* .as our point of departure. The inequality follows from part (2) and the

equality from the definition of P'. We may proceed inductively as follows:
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yieldst

and so on. Once we carry the process to the end we have proved that (SP') is

stable.

This completes the proof of the~ claim; to complete the proof of the lemma let

us start with a stable polite tandem (S,P). Consider the iterates of Toperating
on P: pk 4T Tk(p) then

* (I)(Spk) is stable and polite.

* ii i, 1ILSN (pbkUI is a decreasing sequence bounded

from below.

Therefore the limit pi=' lim(k-...00) p exists and O:Sp:S 1. -- A

It is easy to- check that (S,P) is a fixed point of T.Thus, by definition of T,

we have-

PIa z( 1-P1) a ... OPN-l(I1 PN-a,)( 1 -PNq-3aPN( 1-PN-1)( 1 -PN..-

so that P is a fair policy which attains S. This concludes the proof of the

* second part, i.e., CNSCN.

Q.E.D.
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5.2.2 HOW TO TUNE UP YOUR TANDEM?

The lemma of the previous section enables us to compute the capacityr of

polite (or fair) tandems. All we have to do is maximize the value of S which4

may be sustained by a fair policy. That is, find the maximal S satisfying:

(5.2-4) S z p I(S) zpZ(S)(l -p 1 (5)) 3...3pN(S)(1-pN~1(S))(1-pN..a(S))

A pair (S,P(S)) for which 5.2-4 is satisfied, we call a tunsd-up tandem.

Rewriting the recurrence relations of 5.2-4 as:

P32 leP 2 /(1-P2 )J

(5.2-5) .

Pi (-Pj.. 3 )x [Pi- I AI.-Pi- 1)

2N (l-plq.3) x (PN..1 1( 1-PN-1)

We get a nonlinear system of recurrence relations.
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To solve the system 5.2-5 we use a linearization trick. Consider the

following system of linear recurrence equations:

f I 3 I

(5.2-6) i3 i+-Si

LEMMA:

For 0:5S:51 if (fj())i~ is a solution of the linear system 5.2-6, then

PJ(S) AS~fj(S)/fj+Z(S)J solve the nonlinear system 5.2-5 of the tuned-up tandem.

PROOF:

Let us use induction:

P1 (S) AS. P2 (S) A f/f 4 uS/(1-S) = Pi/(1-Pl).

Assume that we have proved already that

p I(S). p2 (S) ........ pi- I(S)

solve the first i- I equations of 5.2-5; then

(5.2-7) p1(S) A Sfj/fj+2

so that the i-th equation is satisfied too and the proof is concluded.
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Q.E.D.

Now that the tuning-up problem had been linearized the path to follow is the I
routine z-transform solution. We defirte

(5.2-8) F(z,S) j~1 fi(S) 71

We Use the notation F(Z) when there is no danger of confusion. The

transformation of equation 5.2-6 yilds..

flz + zz U i *z( 3 -f 2 )

(5.2-9) F(z)

Finally:

z

(5.2-10) Fz

Sz3 -z +4.1

Which may be inverted to give:

(5.2-11) fil(S) 2= (_S)k(j,~ 1 j ZI

Therefore the tuning-up problem is solved. In table 5.2-1 below we list few

of the polynomials fj(S). (Note the surprisingly nice structure of the

polynomials fj(S). The coefficients of (-S)k are the partial sums of the

coefficients of (-S)k- 1.)

Figure 5.2-a depicts the tuned-up policies p (S) versus S.
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f I(S fZ(= f3 (S) I
W4 S) I - S
t5 (S) I 1 2S
fra(S) I -3S -

f7(S) I1- 4S + S2

f ~ 8(S) I -5 S +3S?
f 0(S) I -6S + 60
f I (S)t 1 - 7S. + I S2 3

f I ((S)I -8S + 157- -4S3

f 15(S) I -IOS + 28Sa- -aos3 +4

11

153101051

Table 5.2-1: The polynomials fj(S)

A
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THE CAPACITY OF POLITE TANDEMS (HEAVY-TRAFFIC CAPACITY)

In this section we derive a solution to the capacity problem for polite

tandems.

LEMMA:

Let (S,P(S)) be a tuned-up tandem, then:

(A) Pl(S) pz(S..... (PN(S)

(B) For lS15N, pj(S) is an increasing function of S.

PROOF:

(A)

P2 p(1 pI ) > Pt

P3 ; PZ(" PZ) > P2

-so

_4'1

P1 P2 < P3 ........

* then

* ~ p+ Pj2 upjx((1.pj 2 )/(1..pj)J > P1

* Thus p1.+. I Zpi and (A) follows.
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(B)

The claim of (B) clearly holds for p1 (S) =S and p2 (S) uS/(I-S) (i.e., both are-2

increasing functions of S in (0, 1 ]). Let us use induction again. Assume: p 1 (S),

.pS ... pj(S) are all increasing functions, of S. now

pi 1 ( -pi)( 1-p1.. 1 ) =S implies pj,1 (S) =SI(1-p1 (S))( 1-pjil(5 ))] 7

When S increases the induction assumption guarantees that the ri~ght hand

side increases too. This concludes part (B).

Q.E.D]

THEOREM:

The cap~acity of the tanldem of lengtb N CNis the minimal zero of the polynomialI

PROOF:

If (SP(S)) is a tuned-up tandem and we let S grow from 0 to CN, then P(S)I

will grow coordinatewise and

0 PlS P20) ......... PN(S): <I

The polite capacity CN is the maximum value of S which is attainable in a

tuned-up system. This is the value of S for which PN(CN) 1 This equality

further implies

I CNfN(CN)/ fN+Z(CN)

namely
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0 ufN'+(CN) -CNfN(CN) =fN+3(CN)

Q.E.D

Using the above theorem, it is ea.'I to compute CN. In Figure 5.2-3 We Plot

the capacity CN of polite tandems versus their length N.
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Figure 5.2-3: Hfeavy-traffic (polite) capacity of tandems
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5.2.3 ONE. TWO. THREE. FOUR. INFINITY !

One hop ALOHA PRNETs tend to become unstable as they grow in size

[KLEI76, LAM74, FERG75]. The infinite population system, so to speak, can

produce so much cross interference that no open loop transmission policy will

stabilize it.

Tandems are "nicer" PRNETs in this respect. The amount of interference does

not depend upon the system size. One expects some better limiting behavior.

Can an infinite tandem be stable ? What is the polite capacity of an infinite

tandem ?

CLAIM:

(A) CA 4 4/27, is an attainable throughput by a tandem of any

length. I
(B) Coo is the largest such throughput.

(C) For all i_0, pI(CCO) C 1/3.

PROOF:

(A)

Let us return to the expres;ion 5.2-10 for the transform F(zS) of the

sequence (fj(s))J=I.

F(z,4/27) = z/[(+z/3)(1-Zz/3) 2 ]

Inverting the transform we get:
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lo

fl(4/27) = (1 /9)[ (-1 / 3 )J- I + 9J(2/3)J + 2(2/ 3 )J- ]I

Clearly V J_ I fj(4 / 2 7 ) 0. Thus by the theorem of section 5.2 on page 239,

Cj)4127 for all I 5 J. which concludes the proof of part (A).

(C)

To derive the inequality it is enough to show:

V ja 1. (1/3)> (4/27)( fj(4/27) I fj 2 (4/27)

This follows through some simple uninteresting tedious manipulations

which we omit.

(B)

Finally, let S be any tbroughput attainable by an infinite tandem.

(pj(S)),j.I is an increasing sequence of numbers bounded from above. Let

P;(S) 4 tim(j_._m) pj(S); S pj(l-,pj.t)(-jZ) for Jk4 implies the limiting

relation: S(p') p*( l-p*). The maximal value of S is: max(S(p*) I 0 < p < 1),

which is 4/27.

O.E.D

The polite capacity of an infinite tandem is 4/27. The tuned-up policy that

attains this capacity satisfies pj(4/27) C 1/3 for jk 1. The convergence to the

limiting behavior is fast. Indeed, the polite capacity CN drops as N incrOMals

according to the rule: one, two, three, four, infinity (i.e., for N)4 CN Is

already almost 4/27).
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* 5.3 RUDE TANDEMS ARE BETTER
*11

* Consider the tandem PRNET of the previous section. Let us assume that the

tandem chooses the policy P A (1,1 ... ); we call this policy a "T" policy.

Indeed each PRU is as inconsiderate towards the needs of his fellow PRUs as

* possible.

* Fortunately. being maximally inconsiderate improves the performance of the

tandem by far. An arriving packet is queued at the upper end of the tandem

waiting for its turn to be relayed forward. Once it enters the tandem it is

guaranteed a free channel at each h~op. The phased propagation of packets is

depicted in Figure 5.3- 1. The effects of rudeness are identical to the behavior of

the "maximal interference" model for two interfering PRUs (chapter 3.4).

The rude tandem provides the best possible service - a perfect scheduling of

the channel resource. The capacity it obtains is 113. This is the best capacity

* that a multi-hop PENET may obtain. Indeed, in a multi-hop network the

* service of a packet at any single node requires at least 3 slots. Thus, at most one

third of the channel may be utilized for actual work. The rude tandem obtains

this upper bound.

The rude policy has some additional features of importance. Rudeness

* introduces a natural flow control mechanism which restricts the number of

packets that may exist in the network at any single slot to a mninimnum. The

rude tandem does not require excessive buffering inside the network. It offers .!

the best network behavior which we may hope for.
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Figure 5.3-1: P~hased packet propagation on a "rude" tandem
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5.3.1 THE COMBINATORICS OF RUDENESS (PHASING IN NETWORKS)

In this section we would like to develop some better insight into the problem

of singularity. What makes rudeness possible? How wefl can a singular

network perform? Are there other networks which are singular?

Let us reconsider the tandem. The ability of a rude policy to perform

perfectly results from two singular properties:

1. A collision on a tandem does not lead to a deadlock.

2. It is possible to generate configurations of non interacting packets

whose movement is synchronized.

To generate singular networks we should design the hearing topology to

obtain the above features. NOTE, our point of departure is in no way

prescriptive. That is, from a practical point of view, the hearing topology is

hardly a design parameter that may be chosen. All we want is to understand

singularity.

Let us start with a tandem and increase the transmitting power twice, thrice,

etc... Figure 5.3-a depicts the hearing topology of the resulting hearing graphs;

we are getting overlapping tandems. It is easy to check that when the arrivals

are restricted to the upper ends of the different subtandems, rudeness leads to

the generation of perfectly synchronized trains of moving packets. Figure

TRAINS describes some typical trains. The network becomes a natural

scheduling mechanism which eliminates collisions even at the last hop. The

throughput that such networks obtain is n/2n+l, where a is the increase in

power. The limiting throughput is 1/2. This indeed can be easily shown to be

.1
m l'.1
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the best possible throughput for an), multihop network with a fully connected

hearing graph near the station.

Therefore, singular network structures, other than the tandem, may exist.

Moreover, such network structures may be used to synchronize the random

demands of communication, perfectly. In the context of a PRNET perfect

singularity may not exist, yet the discussion above shows that singular hearing

topology is a desirable feature to strive at. To a large extent this may be

acheived by using, for instance, directional antennas, or taking advantage of the

geography.

The optimality of rude transmission policies results from the singularity of

both the topology and the input structure. Consider the tandem with arrivals

distributed all along. The rude behavior can no longer create those nice trains

of non- Interferring packets as in Figure 5.3-1. If we consider the busy status

of the queues in the tandem, it is clear that rudeness is going to be a very bad

policy during many slots. For instance, if the tandem is kept fully busy most of

the time then politeness is superior to rudeness.

" Between rudeness and politeness there is a spectrum of admissible

transmission policies. Which policy should the network choose ?
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5.4 FRTOM RUDENESS TO PRUDENCE
(THE ECOLOGY OF COMMUNICATION CHANNELS)

5.4.1 PARETO POLICIES FOR SHARING THE COMMUNICATION CHANNEL

In what follows we shall develop a novel attack upon the capacity problem.

The method that we employ generalizes that of section 5.1.2. We shall

reconsider the problem of decentralized decision from a fresh point of view,

develop a suitable notion of decentralized optimality criteria and characterize

the optimal policies w.r.t. this criteria. The rules of behavior which are so

developed can be easily implemented as an effective decentralized transmission

control algorithm which requires only acknowledgement traffic to reach

decisions. Both optimal transmission control policies, optimaly controlled

Slotted-ALOHA and the optimal random Urn scheme turn out to be particular

realizations of the optimality criteria which are developed.

Let us consider the problem of choosing a transmission policy from the point

of view of an individual PRU. If he chooses to transmit with a high probability

he may be wasting the shared channel, polluting it with collisions. If his

transmission probability is too small, he may be wasting useful slots in silence.

The PRU faces a typical problem of ecology, i.e., how to best utilize the shared

natural resource. What is an optimal choice of transmission probabilities?

The question may be answered only if we impose some global objective

function to be optimized by the network. The decentralization of the decision

process and the requirement of a real-time decision mechanism may rule out the

possibility of implementing a globml optimization mechanism. The classical

approach to the problem is to model the constraints quantitavely and solve the
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constrained optimization problem. This approach seems to lead to

insurmountable difficulties when it comes to a characterization of the

constraints imposed by decentralization, computational and communication

complexity and the real-time constraint. Even a simple description of the above

constraints leads to intractable optimization problems. Alternative approaches

should be sought.

One possible alternative is to develop a (sort of) dual approach. That is, rather

than keeping a hard-to-reach objective fixed and dealing with an extremely

restricted set of available policie:s, we may keep the set of policies fixed and

choose a restricted objective function. The idea is simple: if the objective is too

hard to reach let us replace it with an easier objective, i.e., weaken it. The

weakening process must be consistent, i.e., the set of solutions to the weaker

optimization problem should include the solutions to the original problem. An

additional merit to this weakening process is that the class of weaker solutions

may include policies which are suitable for different objectives (for instance

minimizing delay, maximizing throughput).

Let us consider the problem of finding a suitable weaker objective function.

A trivial solution is to consider as a weak notion of optimality no notion at all.

The set of weakly optimal solutions is the set of all policies. In particular any

solution to a global optimization problem belongs to the set of weak solutions.

Of course this is an uninteresting solution.

To generate an interesting notion of optimality we should put ourselves again

In the shoes of an individual PRU. As far as he is concerned, the quality of the

shared resource can be measured in terms of the expected number of successful
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packets that he may deliver, i.e., the individual throughput. A reasonable

choice of policy must be such that it is impossible for all PRUs to improve their

individual utility (throughput) simultaneously. Recall that policies satisfying

this condition are called Pareto optinal. This is a reasonable choice of a weak

sense of optimality. Indeed, it is a suitable notion for any global objective

compatible with the individual ulility function of a PRU. However, the

usefulness of this notion can only be appreciated once we characterize optimal

policies.

The choicr of a wrakr notion of optimality presented above is quite

arbitrary and could only be justified after the fact. An important question to

consider is whether it is possible to produce a parametrized system of objective

functions which is monotoiiic in the! parameter (in the sense of set inclusion of

optimal policies). Is it possible to translate the constraints of distributivity into

constraints upon the parameter of the objective functions?

We leave the above question for a future research, proceeding with a

formalization of the heuristic utility function which we described above. Let

t t t t
b (b ,ba. bi designate the occupancy process, that is:

1 if PRi has a ready packet at slot t.

(5.4-1) b -

0 otherwise.

Let ir (h) designate the distribution of b,.
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We define the throughput process:

1 if PRi successfully delivers a packet

to his destination, at slot t.
t •/

0 otherwise.

Let us assume that each node PR i routes its packets to a single destination

PRd(t). The routing matrix R describes a spanning tree of the hearing graph.

t
We can express the mean throughput of PRi , conditioned upon b = b, as follows:

pi I p j )  if bi 1

(5.4-3) s (,rP)- EX IbtubJ=

0 if bI 0

where

i (_. J/i. bj= I and PRj interferes with PRj)

The expected throughput of PRi at slot t, is given by:

t-.'
(5./:::c.4-4) ! R

IC(OI)N

where Ut () i the distribution of b_.

llenceforth we shall eliminate the time indexing t, whenever no danger of

confusion arise, In order to simplify the notations. Equation 5.4-4 defines a

continuous map S a J(P) of policies onto attainable throughputs at slot t. The

hypercube of policies A C 0, I]N is mapped onto a compact domain L(A) of all

attainable throughputs.

' -m-1
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Recall the definitions of section 5.1.2; the map S L $(P) is called the Abramson

throughput operator. The throughput Si(P) is considered as the utility which PR i

attaches to the policy P. A throughput vector S is called Pareto-optimat if it is not

dominated by any other attainable throughput. A policy P, which obtains a

Pareto-optimal throughput, is called Pareto-optimal policy. Pareto-optimal

policies are precisely those policies for which we cannot improve the utility of

one PRU without decreasing the utility of some fellow PRUs. Therefore by

choosing this notion of optimality we replace a global objective function with a

set of local objective functions, easier to handle by a decentralized decision

mechanism.
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5.5 SILENCE IS GOLDEN....SO ALSO IS THROUGHPUT

In this section we derive a formal characterization of Pareto optimal plilcies.

The results have a surprising intuitive interpretation.

Let us reconsider the Abramson map defined by equation 6.4-4 of the

previous section:

(5.5-13) s zb( (0,1) r(b) s(bP)

let p be a Pareto optimal policy obtaining a throughput (P). Let P be a

policy diffpring from P0 by a small perturbation APfi P -Pa. If S is the

throughput obtained by P then S constitutes a small perturbation of 50; let

AS A -5e be this perturbation.. The conditional throughputs si(bP) are

smooth functions of P. Therefore AS is related to AP through a linear j
transformation:

(5.5-14) AIuSA-

described by the Jacobian matrix:

(5.5-15) 6S AZ .( aS(b,) .tI .Rkasi(k.), :-
S_'.

which we call the Jacob i an matr ix of the network. The transformation described

by 5.5-2 is a linear approximation of the nonlinear Abramson map near the

Pareto optimal policy PC.

Let D (PO) denote the set of admissible perturbations of PC. Clearly, 0 4 D(Pa).

Moreover, if PO is an internal point of the set of admissible policies then D(P ° )
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then the image of D (P0). i.e., the set of admissible perturbations of 5 contains a

neighborhood of zero. This contradicts the extremality of S. Therefore, the -

Jacobian matrix of the network must be singular at Pg.

What If P0 is not an internal point of A? If PO is internal to any face of A then

the argument above may be repeated by properly restricting the Abramson

operator to a subnetwork of the original network. The demonstration involves

some lenghty combinatorial arguments that are of no interest for us. Therefore

we shall procerd to derive necessary conditions for Pareto optimality, assuming

that PO is internal to A. The conditions that we derive may be verified to hold

when r0 is not an internal point of A and even when P0 is an extreme point of A.

*i2 We conclude: if PO is a Pareto-optimal policy obtaining a throughput SO then the

jacobian determinant of the network must be zero. That is

(5.5-4) 0 I I

The generic elements of the Jacobian are easily computed to be:
Ei  i=.J

1-pi

SI1 4  10i

where

' ' _E 1 AZ "(1.)( I-Pi) rT (1-PJ)
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is the expected number of slots which art empty at the destination of PR1 given that

it is busy, and N (k) pi f (I -pk, it j interferes with i

Q1 I babr I) kel1(19

si/i.

0 if J docs not interfere with i

* is the exf'rcted numbr of successful Packets that PR1 delivers, given that PR1 is

busy and that PRj interferes with PRj; it is zero otherwise.

*Let us consider a typical one-hop network. In this case the optimality

condition 5.5-4 may be expressed as:

El -Si/a -S 1 13 ... SJIN

-al E -2/3 ... I21
-S3 11 -S312 E3 . ..3/11

(5.5-6) 0 165 ............ a........

-Sj/I -Sil ... E1...... S1 /N
.................... # ................

[-,iql i SjZ ......... N
In particular consider the symmetric case when all PEUs are all1ke, the .

determina~nt bocomes (after some easy algebra):

when. E A El mEaz... aENj and Sj~j for all i and J (10j).
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This expression is zero if f

(5.5-8) E (N- US

The left hand side represents the expected number of slots that a busy PRU

* -leaves empty at the destination: we call this: "silence". The right hand side

represents the amount of throughput, produced by the rest of the network, that

a busy PIU se'es; we call this: "through put". Thus, a necessary condition for anl

optimal selct ion of transmission policies is that each PRU equate "silence" with

"throughput0 .

We conclude for the symmetric one-hop PENET that if a policy is

Pareto-optimal, then each busy PRU trades the slots which he wastes in silence

* for an equal numbe'r of slots successfully used by all those PRUs which may be

harmed by his transmission.

Let us return to the determinant of the general network 5.5-4. If it is to be

zero, there should be a linear combination of its rows which yields zero. Let us

denote the coef ficients of such a linear combination _q (ci1,ca...... cN). The

optimality condition:

c1 E1 Z CAS 51 1
20(IEI))

cNENU CJsJ/m
(ii N*l(s)) :
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. .. . . . .. .. ...



S . -

may be interpreted as follows. Each PRU PRi is endowed with a slot dollar

cost c i reflecting his relative significance in the network. The left hand side of

each of the above expressions represents the value of silence of the respective

PRi . The right hand side represents the value of success for the busy PRUs

;..:.. whose transmission PRi may harm. given that PRi is busy. rhe optimality condition i.

requires that each PRU, once busy, should consider the needs of his fellow PRUs. He should be

ready to trade his silence for an equivalent dollar-worth amount of their throughput, by

. :selecting his transmission policy to balance the two quantities.

Therefore by properly choosing a pricing policy for the network we may

approximate global objectives through the decentralized optimization

mechanism. For instance, if we permit dynamic pricing than it is possible, if

we have centralized perfect scheduling mechanism, to give some PRUs an

infinite cost and other PRUs a zero cost; by properly choosing the allocation of

prices, perfect scheduling is obtained. If we do not have a perfect information

pricing mechanism we may still adjust prices every once in a while or make the

prices time dependent. Various interesting decision mechanisms may be

obtained.

It seems that by properly combining the decentralized optimality criteria

with some hierarchical adaptive pricing mechanism, we could develop an

. .. ° - - • . . . .
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answer to the problem of time-decision hierarchy which was raised in the

second chapter. The precise formulation of the answer, as well as the problem

of establishing the relation between global objectives and different pricing

mechanisms, are left for future research.
N

Let us consider the ecology of the communication channel. This shared

resource may be wasted by collisions if the users are too rude. If the users are

too polite they may leave much of the resource under-utilized. The j
Pareto-optimal policies make the best expected use of the channel in the sense -

that every slot wasted in sile:nce by one PRU is utilized by another. The

pollution of the channel by collisions or under-utilization, during some slots, is

not the result of imprudent network behavior, but the consequence of the

statistical fluctuations of the service demands. Pareto-optimality, thus, represents

maximal /pudence in the face of lady lutk.

Now we explore the relation of the characterization which we obtained

above to the heavy-traffic results of Abramson, presented in section 5.1.2. We

examine the asymptotic behavior of a Pareto-optimal one-hop network as the

traffic becomes heavy. The heavy-traffic condition may be expressed in terms

of the distribution of occupancy. Namely, r(_) = S(xj), where I is the vector

all of whose coordinates are 1 and 8 is Dirac's delta distribution. The Jacobian

matrix of the network degenerates into the form which had been considered in

section 5. 1.2 . The optimality conditions reduce to the conditions of equation

5.1-5 in section 5. 1.2. We see that Abramson's results are a particularization of

our characterization when the traffic is very heavy.

Finally we wish to show that the optimal Urn policy derived in chapter 2,
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• """269



satisfies the optimality condition 5.5-6. Let us assume that n PRUs out of N
.4-]

network members are busy. Let k be the number of PRUs selected for

transmission. We consider the decision making from the point of view of a

given busy PHU. "silence" occurs if all k owners of transmission right happen

to be other non busy PRUs. The probability that this occurs, given that our PU

Is busy, Is: (N-k 1)

(5 .5 - 9 )1- 
1(n-I/

The probability of a successful use of a slot by another PAU, given that our

des~giad P1WI is busy, is given by:()(k )

(5.5-10) (N-l)

Equating the two quantities we find that k should satisfy

I k
N-- -k-n+i

from which follows

(5.5-11) k (N-nl)/n

This is precisely the optimal choice of k as given by equation 2.2-19 of section 2.2.2.

Therpfore. a busy PHU should select k in such a way so as to equate his expected

silence with the throughput of others.
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5.5.1 DECENTRALIZED ALGORITHMS TO OPTIMIZE TRANSMISSION

POLICIES

The characterization of optimal transmission policies, obtained in the

previous section, may serve as a basis for a set of distributed access control

algorithms. The algorithms are quasi-static in the sense of [GALL77]. The

decision making is completely decentralized. The information required for a -f

decision is available to each PRU, at no extra cost, through the acknowledgment

mechanism.

The algorithms consist of a decentralized iterative process that tries to

balance "throughput" and "silence". The problem is essentially that of solving a

large stochastic systpm of balance equations through gradient iterations. The

details of the algorithms, as well as the problems of convergence, are beyond the

scope of this dissertation and are left for future research.

Let us recall the optimality rule: For each PRi

A p. .

(5.5-12) Et Si

A
where Ei is the expected dollar-value of empty slots at the destination of PR1 ,

when PR1 is busy. Si is the expectd dollar-value of the throughput of those

PRUs with which P i may interfe:re when it is busy.

The algorithm to implement the rule 5.5- 12 consists of

1. ESTIMATION:

Each PRU gathers acknowlegments statistics during his busy

periods. We assume that both successful packet deliveries and
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collisions are acknowledged. PRi  can monitor the

acknowledgments sent by all PRUs that he may hear. Therefore

t
PR i observes si for all Pllj such that i(I(J). from which he may

t t t
compute Sj 4 cis1 , where the summation extends over all PR1

with which Pr1i may interfere ((l(j)). The conditional expectation

t -of Si given that PRi is busy, is precisely the "throughput" that we

wish to estimate. The estimation of the last parameter can follow

standard methods for estimating point processes (SEGA76].

Similarly, "silence" can be estimated by monitoring the

acknowledgements sent by PRd(i)* (in fact, by monitoring slots in

which d(i) does not acknowledge anything). Again the problem is

that of estimating the conditional expected value of an observed

point process.

If only successful packets are to be acknowledged, then E1 may be

estimated from the unconditional expected silence at PRd(i) to be

monitored by the latter. If the acknowledgement mechanism is

not collision free, further sophistication must be introduced into

the estimation mechanism.

2. ADAPTATION: 

Here the rule is simple: if Ei ) Si, then PR1 knows that he wastes

too many slots, which nobody else uses anyway, in silence. PRi

*Here d(I) denotes the Immediate destination of transmission# from PRI.
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will increase pi. If E1 St then, by the same token, PRi knows that

he is talking too much, preventing fellow PRUs from getting a fair

portion of the channel. PRi should decrease Pi.

There is only one problem: the rule 5.5-12 is necessary but insufficient. For

example, the rude policy P - ( 1, 1,... 1) satisfies the rule independently of the

input structure giving Ei = Si = 0. Clearly, our algorithm may lead the network

to choose this policy even when the results are disastrous. We have to design

some precautionary measures to prevent our algorithm from converging to the

rude policy when it should not*.

The required modifications are simple: Each PRU monitors his own I
throughput. If, as a result of an increase in pi, PRi watches his throughput

dropping,, he knows that he may have increased it beyond the optimal value.

Tihe natural response is to decrease the value of pi.

The above control mechanism may be implemented in a similar fashion to the

control mechanisms presented by L. Kleinrock and M. Gerla in

[KLEI77. GEIfL77]. Moreover, when the traffic becomes heavy the algorithm

will be an implementation of Abramson's optimality criteria. Thus, it will

become identical to those mechanisms.

In a similar fashion we may use the optimality rule to implement a version of

the Urn scheme. Indeed, as demonstrated in the previous section, the optimal

selection of k (the number of PRUs possessing a transmission right) satisfies the

*Note, however, that a "rude" policy ma , sometimes be the best policy, e.g., in the case of a
singular network topology.
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optimality rule. Therefore, k may be adjusted using the information acquired

from the acknowledgment traffic only. The algorithm to implement the

scheme consists of two parts similar to those above

1. ESTIMATION: same as before. "'

Z. ADAPTATION:

If Ei < Si. then using the expressions of the previous sectionfor Ei

and S1 (5.5-9 and 5.5- 10), we find that

(N-n+l)/n ( k

That is, k is too large- PBi should lower his estimate of

k. Similarly, if Ei ) Si.P t should increase his estimate of k.

By combining the above decentralized decision mechanism with a

higher-order pricing mechanism, it is possible to establish priority mechanisms

over the network. This possibility of establishing a family of hierarchical

resource-sharing mechanisms is an appealing subject for further research and

experiments. Further work is also required to develop the details of the

estimation and adaptation mechanisms, prove the convergence of the

algorithms, compare their performance in the context of one-hop systems with

that of known control schemes and test them in a multi-hop environment.

To conclude the discussion, we have seen that Pareto-optimality provides an I
excellent norm for rational decentralized resource-sharing. Using this

criterion, we have derived an intuitively simple, yet powerful, rule-of-thumb

- for optimal, decentralized, multi-access control. Not only does the optimality
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rule encompass previous results (e.g., optimal Slotted-ALOHA and the optimal

Urn Scheme), but it also enhances our understanding of proper hierarchical,

decentralized, channel-allocation policies. Moreover, it yields a class of simple

distributed decision mechanisms to implement the optimal policies. Further

research is required to explore the stability of the proposed access-control

mechanisms and to apply our methods to solve other problems of decentralized

resource-sharing in computer communication networks.
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